研究生: |
黃奎喨 Kwei-Liang Hwang |
---|---|
論文名稱: |
具有適應性干擾抑制之改良式功率控制技術 An Improved Power Control Scheme with Adaptive Interference Suppression |
指導教授: |
王晉良
Chin-Liang Wang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 功率控制 、適應性干擾抑制 、分碼多工 |
外文關鍵詞: | power control, adaptive interference suppression, cdma |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
MAI和Near-far effect是在分碼多工進接(CDMA)系中中傳統接收器效能受限的兩個主要因素,而為了解決這兩個問題,干擾控制技術和功率控制演算法為兩個被設計用來解決此問題的方案。S. Ulukus與R. D. Yates提出了結合了最小均方差干擾抑制及功率控制技術的方法,稱為最小均方差功率控制技術(MMSE power control)。為了降低最小均方差功率控制技術中所使用到的運算複雜度,C. L. Wang等人提出了使用適應性干擾抑制取代原本架構中的估算濾波器係數的MMSE演算法。從電腦模擬中,由於適應性干擾抑制濾波器要收斂到最小均方差干擾抑制濾波器之濾波器係數須要一段時間,此法會在收斂過程中會須要較多的功率消秏以彌補在濾波器效能上的差異。在本論文中,我們藉由討論上面兩種方法的主要差異點,研究出何以後者會使用較多的功率消秏,並討論適應干擾抑制濾波器和功率控制技術兩者的互相影響,針對這個特點,我們分析並提出一簡單的二階迴歸模型來計算在適應性濾波器中干擾均分差,並預期其效果,再將此結果送入功率控制演算法中,如此能使具有適應性干擾抑制之功率控制系統有更接近最小均方差功率控制技術之效能。此外,為進一步提升適應性干擾抑制濾波器的效能,我們提出一簡單之應用於適應性濾波器中可變式步進值(step size)的調整方法。
從電腦模擬的結果,我們發現,利用以上兩種改良式的方法,能在不論是總消耗功率上,或是收斂速度上,有著更接近最小均方差功率控制技術之效果,而同時,此所提出的演算法所增加的複雜度並不大。我們可以相信,此方法較原本結合適應性干擾抑制及功率控制之作法,具有更佳的效能。
The capacity of a code division multiple access (CDMA) system is limited by multiple access interference (MAI) and the near-far effect. Interference suppression and power control provide solutions to these problems. In some previous works, interference suppression and power control are considered separately. In order to increase the system capacity of a CDMA system, it is better to have a joint consideration of these two issues. Ulukus and Yates proposed an iterative and distributed algorithm that is able to achieve this goal. It is shown that this approach can converge to a minimum power solution where all users satisfy their own quality of service requirement; besides, the corresponding filter coefficients also converges to the minimum mean-squared error (MMSE) solution. Recently, Wang et al. have developed a strategy to reduce the high computational complexity involved in the algorithm proposed by Ulukus and Yates. The reduction of computational complexity comes from the use of an adaptive algorithm instead of the instantaneous MMSE approach for interference suppression. In this thesis, we further analyze the adaptive approach proposed by Wang et al and propose an improved scheme for power control with interference suppression. As compared to the approach by Wang et al., the proposed one achieves better performance (in terms of both convergence speed and power consumption) with no significant increase in complexity. Computation simulations are given to demonstrate the effectiveness of the newly proposed approach.
[1] J. Proakis, Digital Communications. New York: McGraw Hill, 3rd., 1995.
[2] A. Duel-Hallen, J. Holtzman, and Z. Zvonar. “Multiuser detection for CDMA systems,” IEEE Personal Communications, vol. 2, No. 2, pp. 46-58, April 1995.
[3] S. Verdú, “Minimum probability of error for asynchronous gaussian multiple-access channels,” IEEE Trans. Information Theory, vol. 32, pp. 85-96, January 1986.
[4] R. Lupas and S. Verdú, “Linear Multiuser detectors for synchronous code-division multiple-access channels,” IEEE Trans. Information Theory, vol. 35, pp. 123-136, January 1989.
[5] A. Duel-Hallen. “Decorrelating decision-feedback multiuser detector for synchronous CDMA,” IEEE Trans. Communications, vol. 41, pp. 285-290, February 1993.
[6] U. Madhow and M. L. Honig. “Error probability and near-far resistance of minimum mean square error interference suppression schemes for CDMA,” in IEEE Globecom, pp. 1339-1343, December 1992.
[7] U. Madhow and M. L. Honig. “MMSE interference suppression for direct-sequence spread spectrum CDMA,” IEEE Trans. Communications, vol. 42, pp. 3178-3188, December 1994.
[8] M. L. Honig, U. Madhow, and S. Verdú. “Blind adaptive interference suppression for near-far resistant CDMA,” in Proc. 1994 IEEE Global Telecommunications Conf., vol. 1, pp. 379-384, December 1994.
[9] M. L. Honig, U. Madhow, and S. Verdú. “Blind adaptive multiuser detection,” IEEE Trans. Information Theory, vol. 41, pp. 944-960, July 1995.
[10] S. Ulukus and R. Yates. “A blind adaptive decorrelating detector for CDMA systems,” IEEE J. Select. Areas Communications, vol. 16, pp. 1530-1541, October 1998.
[11] S. Verdú. Multiuser Detection. , UK: Cambridge, 1998.
[12] S. Ulukus and R. Yates. “Stochastic power control for cellular radio systems,” IEEE Trans. Communications, vol. 46, pp. 784-798, June 1998.
[13] R. D. Yates. “A framework for uplink power control in cellular radio systems,” IEEE J. Select. Areas Communications, vol. 13, pp. 1341-1347, September 1995.
[14] S. A. Grandhi, R. Vijayan, D. J. Goodman, and J. Zander, “Centralized power control for cellular radio system,” IEEE Trans. Vehicular Technology, vol. 42, pp. 466-468, November 1993.
[15] S. A. Grandhi, R. Vijayan, and D. J. Goodman. “Distributed power control in cellular radio systems,” IEEE Trans. Communications, vol. 42, pp. 226-228, 1994.
[16] A. Sampath, P. S. Kumar, J. Holtzman. “Power control and resource management for a multimedia CDMA wireless system,” in Proc. 6th IEEE PIMRC, vol. 1, pp. 21-25, September 1995.
[17] P. S. Kumar, R. D. Yates, and J. Holtzman. “Power control based on bit error rate (BER) measurements,” in IEEE MILCOM '95, vol. 2, pp. 617-620, 1995.
[18] P. S. Kumar and J. Holtzman. “Power control for a spread spectrum system with multiuser receivers,” in IEEE PIMRC’95, pp. 955-959, 1995.
[19] S. Ulukus and R. D. Yates. “Adaptive power control and MMSE interference suppression.” ACM Wireless Networks, vol. 4, pp. 489-496, 1998.
[20] S. Ulukus, “Power control, multiuser detection and interference avoidance in CDMA systems,” Ph.D. Thesis, Rutgers University, Pisctaway, NJ, 1998.
[21] A. F. Almutairi, S. L. Miller, H. A. Latchman, and T. F. Wong, “Power control algorithm for MMSE receiver based CDMA systems,” IEEE Comm. Letters, vol. 4, pp 346-348, November 2000
[22] A. Yener, “Efficient access and interference management for CDMA wireless systems,” Ph.D. Thesis, Rutgers University, Pisctaway, NJ, 2000.
[23] M. H. Li, “Adaptive Interference Suppression with Power Control for CDMA Systems,“ Master Thesis, Nation Tsing Hua University, Taiwan, 2000.
[24] C. L. Wang; M. H. Li; K. M. Wu; K. L. Hwang. “Adaptive interference suppression with power control for CDMA systems,” in Circuits and Systems, 2001, Volume: 4, 6-9 May 2001. pp. 286 -289
[25] N. R. Mangalvedhe, “Development and analysis of adaptive interference rejection techniques for direct sequence code division multiple access systems,” Ph.D. Thesis, Virginia Polytechnic Institute and State University, 1999.
[26] P. M. Clarkson. Optimal and adaptive signal processing. Boca Raton: CRC Press, 1993.
[27] S. C. Park, J. F. Doherty, “Generalized Projection Algorithm for Blind Interference Suppression in DS/CDMA Communications,” IEEE Trans. Circuits and Systems-II analog and Digital Signal Processing, vol. 44, pp. 453-460, June 1997.
[28] B. Naredran, J. Sienicki, S. Yajnik and P. Agrawal, “Evaluation of an Adaptive Power and Error Control Algorithm for Wireless Systems,” in Proc. of IEEE International Conference on Communications, Montreal, Quebec, Canada, June 1997.
[29] R. Jantti and S. L. Kim, “ Second-Order Power Control with Asymptotically Fast Convergence,” IEEE J. Select. Areas Communications, vol. 18, pp. 447-457, March 2000.
[30] M. C. Reed, “Iterative Receiver technique for CDMA,” Ph.D. Thesis, The University of South Australia, Australia, 1999.
[31] L. Matti, “Advanced receivers for wideband CDMA systems,” Ph.D. Thesis, Oulu University, Finland, 1998.
[32] J. Markku, “Multi-user demodulation for DS-CDMA systems in fading channels,” Ph.D. Thesis, Oulu University, Finland, 1998.
[33] T. S. Rappaport, Wireless Communications. New Jersey: Prentice Hill, 1996.