簡易檢索 / 詳目顯示

研究生: 陳泰蔚
Chen, Tai-Wei
論文名稱: Determination of Ext_A^{5,*}(Z/2,Z/2)
決定Ext_A^{5,*}(Z/2,Z/2)群之結構
指導教授: 林文雄
Lin, Wen-Hsiung
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 51
中文關鍵詞: 史迪諾代數亞當譜序列
外文關鍵詞: Steenrod algebra, Adams spectral sequence
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇博士論文中,我們透過計算Ext_A^{4,*}(H^*(RP^\infty),Z/2) 群來決定在 Ext_A^{5,*}(Z/2,Z/2) 中的不可分元素。而林文雄教授在 [6] 這篇文章裡面,已完全決定了由 Ext_A^{5,*}(Z/2,Z/2)中可分解元素所構成Z/2子模的結構。把這兩個結果結合在一起,就能完全決定Ext_A^{5,*}(Z/2,Z/2)群的結構。


    Let A denote the mod 2 Steenrod algebra. In this thesis we determine the indecomposable elements in H^{5,*}(A)
    =Ext_A^{5,*}(Z/2,Z/2) by making calculations on the Ext groups
    Ext_A^{4,*}(\widetilde{H}^*(RP^\infty),Z/2) for the infinite real projective space RP^\infty. This together with the result of W. H. Lin on the decomposable elements in H^{5,*}(A) completely determine the structure of Ext_A^{5,*}(Z/2,Z/2)$.

    Chapter1. Introduction . . . . . . . . .1 1.1. Lambda Algebra . . . . . . . . . . 1 1.2. List of some classes in Ext_A^{s,*} for s≦ 5 . .2 1.3. Main Theorem . . . . . . . . . . . . 3 Chapter2. Ext_A^{s,*}(P) for s ≦ 4. . . . . . . . . .5 2.1. Some results on P . . . . . . . . . . . . . ..... 5 2.2. The main method to compute Ext_A^{s,*}(P). . . . .6 2.3. Main results on Ext_A^{4,*}(P) . . . . . . . . . .10 Chapter3. Proof of Theorem 1.3 . . . . . . . . . . . . 22 3.1. Two maps between Ext_A^{*,*}(S^0) and Ext_A^{*,*}(P) ............22 3.2. Sketch the proof of Proposition 2.13 . . . . . . 23 3.3. Prove Theorem 1.3 . . . . . . . . . . . . . .. 24 Chapter4. The differentials d_r: E_r^{*,4,*}-> E_r^{*,5,*} . .............. 34 4.1. List of the differentials d_r: E_r^{*,4,*}-> E_r^{*,5,*}. . . . . . . . . . . . . . 34 BIBLIOGRAPHY . . . .. . . . . . . . . . . . . 50

    [1] J. F. Adams, On the structure and applications of the Steenrod algebra, Comm. Math. Helv. 32 (1958), pp. 180–214.
    [2] , On the non-existence of elements of Hopf invariant one, Ann. of Math. 72 (1960), pp. 20–104.
    [3] A. K. Bousfield, E.B. Curtis, D.M. Kan, D.G. Quillen, D. L. Rector, and J. W. Schlesinger, The mod p lower central
    series and the Adams spectral sequence, Topology 5 (1966), pp. 331–342.
    [4] R. L. Cohen, W. H. Lin, and Mark E. Mahowald, The Adams spectral sequence of the real projective spaces, Pacific
    Journal of mathematics 134 (1988), no. 1, pp. 27–54.
    [5] W. H. Lin, Algebraic Kahn-Priddy theorem, Pacific Journal of mathematics 96 (1981), pp. 435–455.
    [6] ,Ext_A^{4,*}(Z/2,Z/2) and Ext_A^{5,*}(Z/2,Z/2), Topology and its Applications 155 (2008), pp. 459–496.
    [7] W. H. Lin and Mark Mahowald, The Adams spectral sequence for Minami0s Theorem, Contemporary Math. 220 (1998),pp. 143–177.
    [8] A. Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Memo. AMS 42
    (1962).
    [9] M. C. Tangora, On the cohomology of Steenrod algebra, Math. Z. 116 (1970), pp. 18–64.
    [10] John S.P.Wang, On the cohomology of the mod-2 Steenrod algebra and the non-existence of elements of Hopf invariant
    one, Illinois J. Math. 11 (1967), no. 3, pp. 480–490.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE