研究生: |
賴昇志 Sheng-Chih Lai |
---|---|
論文名稱: |
次世代非揮發性記憶體技術之研究-電荷捕捉型NAND型快閃記憶體及低溫鐵電記憶體製程之研究 A Study of Future Non-volatile Memory Technologies - Charge Trapping NAND Flash Memory and Low Temperature Processed FeRAM |
指導教授: |
吳泰伯
Tai-Bor Wu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 161 |
中文關鍵詞: | NAND型快閃記憶體 、鐵電記憶體 、高介電薄膜 、雷射退火 |
外文關鍵詞: | NAND Flash, FeRAM, High-k film, Laser annealing |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著行動電子產品需求的快速成長,非揮發性半導體記憶體也越來越受到重視。在本論文裡,將針對最新型SONOS-type快閃記憶體的抹除機制及性能做深入的探討。此外,一種藉由延長雷射脈衝時間的低溫退火技術也將在本篇中討論,此低溫技術適用於將鐵電電容置於導線之上的鐵電記憶體,以作為系統單晶片之應用。
在新型SONOS-type快閃記憶體的研究中,我們提出並驗證了MANOS元件的抹除機制是一種電子由缺陷跳脫的行為。此外,藉由一種暫態分析的分法,MONOS、 MANOS及BE-SONOS三種元件的抹除機制及電荷儲存能力將可被公平的比較。藉由對抹除機制的了解,一種具創新性的BE-MANOS結構也在本論文中首次提出,此結構具有抑制抹除飽和及加大記憶窗之能力。然而,BE-MANOS之電荷儲存能力卻遠不及BE-SONOS,此問題主要是導因於氧化鋁薄膜無法有效阻絕電荷流失。因此,我們導入一層二氧化矽緩衝層,介於氧化鋁及氮化矽之間,此具二氧化矽緩衝層的BE-MANOS結構不但具有良好的性能,而且改善了電荷流失的問題。另外,在此研究中,我們也釐清了氧化鋁薄膜及二氧化矽緩衝層在電荷阻障層中所扮演的角色。
延長雷射脈衝時間的退火技術將可以提供較多的能量及充分的時間,給予PZT薄膜作為結晶之用,然而,底層的塊材卻依然可以保持在低溫之中。在此研究中,我們針對雷射退火的熱模擬也有所著墨,藉由熱模擬不但可以得知試片中溫度的分佈,也可以了解使用延長脈衝雷射的好處。因此,此新型低溫雷射退火技術,將適用於嵌入式鐵電電容在導線上的鐵電記憶體,以作為系統單晶片之應用。
Non-volatile semiconductor memories have attracted much attention due to the fast growing demand of portable electronic devices. In this thesis, the erase mechanism and the performance of the state of the art SONOS-type flash memories are critically examined, and a low temperature extended-pulse laser annealing for COI FeRAM is also studied.
In the study of innovative SONOS-type flash memories, a de-trapping model for the erase mechanism of MANOS device is proposed and demonstrated. In addition, the erase and retention characteristics for MONOS, MANOS and BE-SONOS devices are fairly compared by using the transient analysis method. Moreover, an innovative BE-MANOS is proposed to overcome the erase saturation and to enlarge the memory window. However, the retention of BE-MANOS is not as good as BE-SONOS owing to the charge leakage through Al2O3 film. By inserting a SiO2 buffer layer between Al2O3 and SiN storage layer, the oxide-buffered BE-MANOS shows good performance and good reliability, and the roles of high-k Al2O3 and SiO2 buffer layer are also clarified in this work.
An extended-pulse laser annealing is used to provide sufficient thermal energy and time into the PZT film to complete the crystallization, while the bulk of materials remains at low temperature. In this work, the thermal simulation is also presented to illustrate the temperature distribution in the specimen and the benefits of the extended pulse. This new low temperature process is suitable for embedded COI FeRAM for SoC applications.
Reference
[1] S.M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981.
[2] N. Naruke, S. Taguchi and M. Wada, ”Stress Induced Leakage Current Limiting to Scale Down EEPROM Tunnel Oxide”, Tech. Digest 1988 International Electron Devices Meeting, pp.424-427, 1988.
[3] P. Olivo, T. N. Nguyen, and B. Ricco, ”High-Field-Induced Degradation in Ultra-Thin SO2 Films”, IEEE Trans. on Electron Devices, vol. 35, pp. 2259-2267, 1988.
[4] J. Maserjan and N. Zamani, “Observation of Positively Charged State Generation Near the Si/SiO2 Interface During Fowler-Nordheim Tunneling”, Journal of Vacuum Science and Technology, vol. 20, pp. 743, 1982.
[5] Paulo Cappelletti, Carla Golla, Piero Olivo and Enrico Zanoni, Flash Memories, Kluwer Academic Publishers, Boston, 1999.
[6] Reza Moazzami and Chenming Hu, ”Stress-induced Current in Thin Silicon Dioxide Films”, Tech. Digest 1992 International Electron Devices Meeting, pp.139-142, 1992.
[7] David A. Baglee and Michael C. Smayling, ” The effects of write/erase cycling on data loss in EEPROMs”, Tech. Digest 1985 International Electron Devices Meeting, pp.624-626, 1985.
[8] D.J. DiMaria, “Stress Induced Leakage Currents in Thin Oxides”, Microelectronic Engineering, vol. 28, pp. 63, 1995.
[9] F. Arai, T. Maruyama and R. Shirota, “Extended Data Retention Process Technology for Highly Reliable Flash EEPROMs of 106 to 107 W/E cycles”, 1998 IEEE International Reliability Physics Symposium Proceedings, pp. 378-382, 1998.
[10] M. Noguchi, T. Yaegashi, H. Koyama, M. Morikado, Y. Ishibashi, S. Ishibashi, K. Ino, K. Sawamura, T. Aoi, T. Maruyama, A. Kajita, E. Ito, M. Kishida, K. Kanda, K. Hosono, S. Miyamoto, F. Ito, Y. Hirata, G. Hemink, M. Higashitani, A. Mak, J. Chan, M. Koyanagi, S. Ohshima, H. Shibata, H. Tsunoda and S. Tanaka, ”A High-performance Multi-level NAND Flash Memory with 43nm-node Floating-gate Technology”, Tech. Digest 2007 International Electron Devices Meeting, pp.445-448, 2007.
[11] Kinam Kim, ” Technology for sub-50nm DRAM and NAND Flash Manufacturing”, Tech. Digest 2005 International Electron Devices Meeting, pp. 323-326, 2005.
[12] F. Arai, ”Future Outlook of Floating Gate Flash Memory”, 2006 International Conference on Solid State Devices and Materials, pp.292-293, 2006.
[13] Kinam Kim, Jung Hyuk Choi, Jungdal Choi and Hong-Sik Jeong, ” The future prospect of nonvolatile memory”, 2005 IEEE VLSI-TSA International Symposium, pp. 88 - 94, 2005.
[14] Jong-Ho Park, Sung-Hoi Hur, Joon-Hee Lee, Jin-Taek Park, Jong-Sun Sel, Jong-Won Kim, Sang-Bin Song, Jung-Young Lee, Ji-Hwon Lee, Suk-Joon Son, Yong-Seok Kim, Min-Cheol Park, Soo-Jin Chai, Jung-Dal Choi, U-In Chung, Joo-Tae Moon, Kyeong-Tae Kim, Kinam Kim and Byung-Il Ryu, ”8Gb MLC (Multi-Level Cell) NAND Flash Memory using 63nm Process Technology”, Tech. Digest 2004 International Electron Devices Meeting, pp. 873-876, 2004.
[15] S.M. Sze, Semiconductor Devices: Physics and Technology, John Wiley & Sons, New York, 2001.
[16] H.T. Lue, Y.H. Shih, K.Y. Hsieh, R. Liu, and C.Y. Lu, “Novel Soft Erase and Re-fill Methods for a P+-poly Gate Nitride-trapping Nonvolatile Memory Device with Excellent Endurance and Retention Properties”, IEEE 43rd Annual International Reliability Physics Symposium, pp.168-174, 2005.
[17] Hang-Ting Lue, Szu-Yu Wang, Erh-Kun Lai, Kuang-Yeu Hsieh, Rich Liu and Chih Yuan Lu, “A BE-SONOS (Bandgap Engineered SONOS) NAND for Post-Floating Gate Era Flash Memory”, 2007 IEEE VLSI-TSA International Symposium, pp. 16 - 17, 2007.
[18] Chang Hyun Lee, Kyung In Choi, Myoung Kwan Cho, Yun Heub Song, Kyu Charn Park, and Kinam Kim, “A Novel SONOS Structure of SiO2/SiN/Al2O3 with TaN Metal Gate for Multi-Giga Bit Flash Memories,” Tech. Digest 2003 International Electron Devices Meeting, pp. 26.5.1 - 26.5.4, 2003.
[19] Hang-Ting Lue, Szu-Yu Wang, Erh-Kun Lai, Yen-Hao Shih, Sheng-Chih Lai, Ling-Wu Yang, Kuang-Chao Chen, Joseph Ku, Kuang-Yeu Hsieh, Rich Liu, and Chih-Yuan Lu, “BE-SONOS: A Bandgap Engineered SONOS with Excellent Performance and Reliability,” Tech. Digest 2005 International Electron Devices Meeting, pp. 547-550, 2005.
[20] Yoocheol Shin, Jungdal Choi, Changseok Kang, Changhyun Lee, Ki-Tae Park, Jang-Sik Lee, Jongsun Sel, Viena Kim, Byeongin Choi, Jaesung Sim, Dongchan Kim, Hag-ju Cho and Kinam Kim, “A Novel NAND-type MONOS Memory using 63nm Process Technology for Multi-Gigabit Flash EEPROMs,” Tech. Digest 2005 International Electron Devices Meeting, pp.13.6.1 – 13.6.4, 2005.
[21] Jang-Sik Lee, Chang-Seok Kang, Yoo-Cheol Shin, Chang-Hyun Lee, Ki-Tae Park, Jong-Sun Sel, Viena Kim, Byeong-In Choe, Jae-Sung Sim, Jungdal Choi, and Kinam Kim, “Data Retention Characteristics of MONOS Devices with High-k Dielectrics and High-work Function Metal-gates for Multi-gigabit Flash Memory,” 2005 International Conference on Solid State Devices and Materials, pp. 200-201, 2005
[22] Chang-Hyun Lee, Changseok Kang, Jaesung Sim, Jang-Sik Lee, Juhyung kim, Yoocheol Shin, Ki-Tae Park, Sanghun Jeon, Jongsun Sel, Younseok Jeong, Byeongin Choi, Viena Kim, Wonseok Jung, Chung-Il Hyun, Jungdal Choi and Kinam Kim, “Charge Trapping Memory Cell of TANOS (Si-Oxide-SiN-Al2O3-TaN) Structure Compatible to Conventional NAND Flash Memory,” 2006 Non-Volatile Semiconductor Memory Workshop, pp. 54-55, 2006.
[23] Youngwoo Park, Jungdal Choi, Changseok Kang, Changhyun Lee, Yuchoel Shin, Bonghyn Choi, Juhung Kim, Sanghun Jeon, Jongsun Sel, Jintaek Park, Kihwan Choi, Taehwa Yoo, Jaesung Sim, and Kinam Kim, “Highly Manufacturable 32Gb Multi – Level NAND Flash Memory with 0.0098 µm2 Cell Size using TANOS (Si - Oxide - Al2O3 - TaN) Cell Technology,” Tech. Digest 2006 International Electron Devices Meeting, pp.2.1.1 – 2.1.4, 2006.
[24] Soon-Moon Jung, Jaehoon Jang, Wonseok Cho, Hoosung Cho, Jaehun Jeong, Youngchul Chang, Jonghyuk Kim Youngseop Rah, Yangsoo Son, Junbeom Park, Min-Sung Song, Kyoung-Hon Kim, Jin-Soo Lim and Kinam Kim, “Three Dimensionally Stacked NAND Flash Memory Technology Using Stacking Single Crystal Si Layers on ILD and TANOS Structure for Beyond 30nm Node,” Tech. Digest 2006 International Electron Devices Meeting, pp.2.3.1 – 2.3.4, 2006.
[25] Chang-Hyun Lee, Jungdal Choi, Changseok Kang, Yoocheol Shin, Jang-Sik Lee, Jongsun Sel, Jaesung Sim, Sanghun Jeon, Byeong-In Choe, Dukwon Bae1, Kitae Park, and Kinam Kim, “Multi-Level NAND Flash Memory with 63 nm-node TANOS (Si-Oxide-SiN-Al2O3-TaN) Cell Structure,” Tech. Digest 2006 Symposium on VLSI Technology, pp.21 – 22, 2006.
[26] http://www.samsung.com/PressCenter/PressRelease/
[27] Hang-Ting Lue, Szu-Yu Wang, Yi-Hsuan Hsiao, Erh-Kun Lai, Ling-Wu Yang, Tahone Yang, Kuang-Chao Chen, Kuang-Yeu Hsieh, Rich Liu, and Chih Yuan Lu, “Reliability Model of Bandgap Engineered SONOS (BE-SONOS)”, Tech. Digest 2006 International Electron Devices Meeting, pp. 18.5.1-18.5.4, 2006.
[28] Szu-Yu Wang, Hang-Ting Lue, Erh-Kun Lai, Ling-Wu Yang, Tahone Yang, Kuang-Chao Chen, Jeng Gong, Kuang-Yeu Hsieh, Rich Liu, and Chih Yuan Lu, “Reliability and Processing Effects of Bandgap Engineered SONOS (BE-SONOS) Flash Memory”, 2007 IEEE International Reliability Physics Symposium Proceedings, pp. 171-176, 2007.
[29] Yi-Chan Chen, “Orientation control of Lanthanide (Nd,La)-substituted Bismuth Titanate Thin Films for Non-volatile Ferroelectric Random Access Memory Applications”, Ph.D. Thesis of National Tsing-Hua University, 2004.
[30] M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Devices, Clarendon Press, Oxford, 1977.
[31] S.L Lung, C.L. Liu, S.S. Chen, S.C. Lai, C.W. Tsai, T.T. Sheng, Tahui Wang, Sam Pan, T.B. Wu and Rich Liu, “Low Temperature Epitaxial Growth of PZT on Conductive Perovskite LaNiO3 Electrode for Embedded Capacitor-Over- Interconnect (COI) FeRAM Application,” Tech. Digest 2001 International Electron Devices Meeting, pp. 275 - 278, 2001.
[32] S. Kobayashi, K. Amanuma, H. Mori, N. Kasai, Y. Maejima, A. Seike, N. Tanabe, T. Tatsumi, J. Yamada, T. Miwa, H. Koike, H. Hada and H. Toyoshima, “64Kbit CMVP FeRAM Macro with Reliable Retention/Imprint characteristics,” Tech. Digest 2000 International Electron Devices Meeting, pp. 783 - 786, 2000.
[33] N. Inoue, T. Nakura, and Y. Hayashi, “Low Thermal-budget Fabrication of Sputtered-PZT Capacitor on Multilevel Interconnects for Embedded FeRAM,” Tech. Digest 2000 International Electron Devices Meeting, pp. 797 - 800, 2000.
[34] H.T. Lue, Y.H. Shih, K.Y. Hsieh, R. Liu, and C.Y. Lu, “A transient analysis method to characterize the trap vertical location in nitride-trapping devices”, IEEE Electron Device Letters, vol. 25, pp.816-818, 2004.
[35] Yu Wang and Marvin H. White, “An analytical retention model for SONOS nonvolatile memory devices in the excess electron state”, Solid-State Electronics, vol. 49, pp. 97-107, 2005.
[36] Shizuo Fujita and Akio Sasaki, “Dangling Bonds in Memory-Quality Silicon Nitride Films”, Journal of The Electrochemical Society, vol. 132, pp. 398-402, 1985.
[37] Frank R. Libsch and Marvin H. White, “Charge Transport and Storage of Low Programming Voltage SONOS/MONOS Devices”, Solid-State Electronics, vol. 33, pp. 105-126, 1990.
[38] T. Ishida, Y. Okuyama, and R. Yamada, “Characterization of Charge Traps in Metal-Oxide-Nitride-Oxide-Semiconductor (MONOS) Structures for Embedded Flash Memories”, IEEE 44th Annual International Reliability Physics Symposium, pp.516-522, 2006.
[39] Sheng-Chih Lai, Hang-Ting Lue, Jong-Yu Hsieh, Ming-Jui Yang, Yan-Kai Chiou,Chia-Wei Wu, Tai-Bor Wu, Guang-Li Luo, Chao-Hsin Chien, Erh-Kun Lai, Kuang-Yeu Hsieh, Rich Liu and Chih-Yuan Lu, “Study of the Erase Mechanism of MANOS (Metal/Al2O3/SiN/SiO2/Si) Device”, IEEE Electron Device Letters, vol. 28, pp.643-645, 2007.
[40] Sheng-Chih Lai, Hang-Ting Lue, Jung-Yu Hsieh, Ming-Jui Yang, Yan-Kai Chiou, Chia-Wei Wu, Tai-Bor Wu, Guang-Li Luo, Chao-Hsin Chien, Erh-Kun Lai, Kuang-Yeu Hsieh, Rich Liu and Chih-Yuan Lu, “A Study on the Erase and Retention Mechanisms for MONOS, MANOS, and BE-SONOS Non-Volatile Memory Devices”, 2007 IEEE VLSI-TSA International Symposium, pp. 14 - 15, 2007.
[41] Sheng-Chih Lai, Hang-Ting Lue, Ming-Jui Yang, Jung-Yu Hsieh, Szu-Yu Wang, Tai-Bor Wu, Guang-Li Luo, Chao-Hsin Chien, Erh-Kun Lai, Kuang-Yeu Hsieh, Rich Liu and Chih-Yuan Lu, “MA BE-SONOS: A Bandgap Engineered SONOS using Metal Gate and Al2O3 Blocking Layer to Overcome Erase Saturation,” 2007 Non-Volatile Semiconductor Memory Workshop, pp. 88-89, 2007.
[42] Y. Horii, Y. Hikosaka, Akio Itoh, K. Matsuura, M. Kurasawa, G. Komuro, K. Maruyama, T. Eshita and S. Kashiwagi, “4 Mbit Embedded FRAM for High Performance System on Chip (SoC) with Large Switching Charge, Reliable Retention and High Imprint Resistance,” Tech. Digest 2002 International Electron Devices Meeting, pp. 539 - 542, 2002.
[43] X.M. Lu, J.S. Zhu, X.F. Huang, C.Y. Lin and Y.N. Wang, “Laser-induced Phase Transformation From Amorphous to Perovskite in PbZr0.44Ti0.56O3 Films with the Substrate at Room Temperature,” Appl. Phys. Lett., vol. 65, pp. 2015-2017, 1994.
[44] X.M. Lu, J.S. Zhu, W.S. Hu, Z.G. Liu, and Y.N. Wang, “Pulsed Excimer (KrF) Laser Induced Crystallization of PbZr0.44Ti0.56O3 Amorphous Films,” Appl. Phys. Lett., vol. 66, pp. 2481-2483, 1995.
[45] Z. Zhang, J. Zhu, D. Su, J. Liu, H. Chen, Y. Wang, L. Kang, J. Zhou, S. Yang, and P. Wu, ”Laser Annealing of SrBi2Ta2O9 Thin Films,” Thin Solid Films, vol. 375, pp. 172 - 175, 2000.
[46] O. Baldus, W. Krasser, S. Hoffmann, R. Waser, and E.W. Kreutz, ”Laser Annealing Studies of Barium Strontium Titanate Thin Films Using Short Laser Pulses,” Integrated Ferroelectrics, vol. 30, pp. 129-138, 2000.
[47] P.P. Donohue and M.A. Todd, ”Pulse-Extended Excimer Laser Annealing of Lead Zirconate Titanate Thin Films,” Integrated Ferroelectrics, vol. 31, pp. 285-296, 2000.
[48] M.S. Chen, T.B. Wu, and J.M. Wu, “Effect of Textured LaNiO3 Electrode on the Fatigue Improvement of Pb(Zr0.53Ti0.47)O3 Thin Films,” Appl. Phys. Lett., vol. 68, pp. 1430-1432, 1996.
[49] P. Baeri, S.U. Campisano, G. Foti, and E. Rimini, “A Melting Model for Pulsing-laser Annealing of Implanted Semiconductors,” J. Appl. Phys., vol. 50, pp. 788-797, 1979.
[50] B.W. Arden and K.N. Astill, Numerical Algorithms: Origins and Applications, Addison-Wesley, pp. 280, 1970.
[51] G.W.C. Kaye and T.H. Laby, Tables of Physical and Chemical Constants, 15th Ed., Longman Scientific and Technical, pp. 58, 1993.
[52] Database of Sopra Spectroscopic Ellipsometer.
[53] B. Yang, T.K. Song, S. Aggarwal, and R. Ramesh, “Low Voltage Performance of Pb(Zr, Ti)O3 Capacitors Through Donor Doping,” Appl. Phys. Lett., vol. 71, pp. 3578-3580, 1997.
[54] K. Aoki, T. Sakoda, and Y. Fukuda, “Characterization of Switching Properties of Lead-Zirconate-Titanate Thin Films in Ti-Rich Phase,” Jpn. J. Appl. Phys., vol 37, pp. L522-L524, 1998.
[55] Chi Kong Kwok and Seshu B. Desu, “Formation Kinetics of PbZrxTi1-xO3 Thin Fims,” J. Mater. Res., vol. 9, pp. 1728- 1733, 1994.