簡易檢索 / 詳目顯示

研究生: 賴昇志
Sheng-Chih Lai
論文名稱: 次世代非揮發性記憶體技術之研究-電荷捕捉型NAND型快閃記憶體及低溫鐵電記憶體製程之研究
A Study of Future Non-volatile Memory Technologies - Charge Trapping NAND Flash Memory and Low Temperature Processed FeRAM
指導教授: 吳泰伯
Tai-Bor Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 161
中文關鍵詞: NAND型快閃記憶體鐵電記憶體高介電薄膜雷射退火
外文關鍵詞: NAND Flash, FeRAM, High-k film, Laser annealing
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著行動電子產品需求的快速成長,非揮發性半導體記憶體也越來越受到重視。在本論文裡,將針對最新型SONOS-type快閃記憶體的抹除機制及性能做深入的探討。此外,一種藉由延長雷射脈衝時間的低溫退火技術也將在本篇中討論,此低溫技術適用於將鐵電電容置於導線之上的鐵電記憶體,以作為系統單晶片之應用。
    在新型SONOS-type快閃記憶體的研究中,我們提出並驗證了MANOS元件的抹除機制是一種電子由缺陷跳脫的行為。此外,藉由一種暫態分析的分法,MONOS、 MANOS及BE-SONOS三種元件的抹除機制及電荷儲存能力將可被公平的比較。藉由對抹除機制的了解,一種具創新性的BE-MANOS結構也在本論文中首次提出,此結構具有抑制抹除飽和及加大記憶窗之能力。然而,BE-MANOS之電荷儲存能力卻遠不及BE-SONOS,此問題主要是導因於氧化鋁薄膜無法有效阻絕電荷流失。因此,我們導入一層二氧化矽緩衝層,介於氧化鋁及氮化矽之間,此具二氧化矽緩衝層的BE-MANOS結構不但具有良好的性能,而且改善了電荷流失的問題。另外,在此研究中,我們也釐清了氧化鋁薄膜及二氧化矽緩衝層在電荷阻障層中所扮演的角色。
    延長雷射脈衝時間的退火技術將可以提供較多的能量及充分的時間,給予PZT薄膜作為結晶之用,然而,底層的塊材卻依然可以保持在低溫之中。在此研究中,我們針對雷射退火的熱模擬也有所著墨,藉由熱模擬不但可以得知試片中溫度的分佈,也可以了解使用延長脈衝雷射的好處。因此,此新型低溫雷射退火技術,將適用於嵌入式鐵電電容在導線上的鐵電記憶體,以作為系統單晶片之應用。


    Non-volatile semiconductor memories have attracted much attention due to the fast growing demand of portable electronic devices. In this thesis, the erase mechanism and the performance of the state of the art SONOS-type flash memories are critically examined, and a low temperature extended-pulse laser annealing for COI FeRAM is also studied.
    In the study of innovative SONOS-type flash memories, a de-trapping model for the erase mechanism of MANOS device is proposed and demonstrated. In addition, the erase and retention characteristics for MONOS, MANOS and BE-SONOS devices are fairly compared by using the transient analysis method. Moreover, an innovative BE-MANOS is proposed to overcome the erase saturation and to enlarge the memory window. However, the retention of BE-MANOS is not as good as BE-SONOS owing to the charge leakage through Al2O3 film. By inserting a SiO2 buffer layer between Al2O3 and SiN storage layer, the oxide-buffered BE-MANOS shows good performance and good reliability, and the roles of high-k Al2O3 and SiO2 buffer layer are also clarified in this work.
    An extended-pulse laser annealing is used to provide sufficient thermal energy and time into the PZT film to complete the crystallization, while the bulk of materials remains at low temperature. In this work, the thermal simulation is also presented to illustrate the temperature distribution in the specimen and the benefits of the extended pulse. This new low temperature process is suitable for embedded COI FeRAM for SoC applications.

    Contents Abstract (Chinese)……………..……………………………………….......I Abstract (English)……………..……………………………………….......II Acknowledgement (Chinese)……………………….……………………III Contents…………………………………………………………………..IV List of Tables……………………………………………………………...IX List of Figures…………………………………………………………….…X Chapter 1 Introduction……..……………………………………..………1 1.1 Prelude…………………………………………..……………..………………..1 1.2 Motivation……………………………………………………………………….3 Chapter 2 Literature Review……..……………………….…..…..………5 2.1 Semiconductor Memory…………………………………………………………5 2.2 Flash Memory…………………………………………………………………….6 2.2.1 History of Flash Memory……………………….……………………….6 2.2.2 What is Flash Memory?……..………………………………..…………..8 2.2.3 Array Architecture of Flash Memory…………………………………..10 2.2.4 Reliability of NAND Flash Memory…………………………………….12 2.2.5 Scaling Challenges of Floating Gate NAND Flash Memory………..…15 2.2.6 SONOS Flash Memory………………………………………….……..19 2.3 Ferroelectric Random Access Memory (FeRAM)…………………………….23 2.3.1 Ferroelectric Materials…………………………………………………..23 2.3.2 Unit Cell of FeRAM…………………………………..…………….…...24 2.3.3 Capacitor-Over-Interconnect (COI) FeRAM………………………….25 2.4 Summary………………………………………………………………………...25 Chapter 3 Study of MANOS (Metal/Al2O3/SiN/SiO2/Si) Device………..51 3.1 Introduction……………………………………………………………….…..51 3.2 Experimental Description…………………………………………………..….52 3.3 MANOS vs. TANOS…………………………………………………………….53 3.4 Transient Analysis……………………………………………………………....54 3.5 Study of MANOS Erase Mechanism…………………………………..………55 3.6 Processing Effect on MANOS Device………………………………..…..……61 3.7 Summary…………………………………………………………………….…..65 Chapter 4 A Study on the Erase and Retention Mechanisms for MONOS, MANOS, and BE-SONOS Non-Volatile Memory Devices…………….…82 4.1 Introduction…………………………..……………………………………….82 4.2 Experimental Description…………………………………………………..…83 4.3 Comparisons of Erase Speed and Erase Transient Current…………………84 4.4 Erase Mechanisms of MONOS, MANOS and BE-SONOS………………….85 4.5 Erase Saturation Level…………………………………………………………86 4.6 Retention Characteristics………………………………………………..…….87 4.7 Summary………………………………………………………………………...87 Chapter 5 BE-MANOS: A Bandgap Engineered SONOS using Metal Gate and Al2O3 Blocking Layer to Overcome Erase Saturation………..93 5.1 Introduction…………………………..………………………..……………….93 5.2 Experimental Description……………………………………………………...94 5.3 Results and Discussion………………………………………………………….94 5.4 Summary………………………………………………………………………...97 Chapter 6 An Oxide-Buffered BE-MANOS Charge-Trapping Device and the Role of Al2O3…………………………………………………………..105 6.1 Introduction…………………………..………………………..…..………….105 6.2 Experimental Description…………………………………………………….106 6.3 Gate Material Effect of BE-SONOS on Erase Saturation……………….…106 6.4 BE-MANOS with a SiO2 Buffer Layer………………………………………107 6.5 Thickness Dependence of SiO2 Buffer Layer on Erase Characteristics……110 6.6 Thickness Dependence of SiO2 Buffer Layer on Reliability………………..111 6.7 Summary……………………………………………………………………….112 Chapter 7 Extended-pulse Excimer Laser Annealing on Pb(Zr1-xTix)O3 Thin Film on LaNiO3 Electrode………………………..………………..128 7.1 Introduction…………………………………..……..……..………………….128 7.2 Experimental Description…………………………………………………….130 7.3 Thermal Simulation…………………………………………………………...131 7.4 Laser Annealing of the Partially Crystalline PZT Films……………………136 7.5 Laser Annealing of the Amorphous PZT Films……………………………..138 7.6 Summary……………………………………………………………………….139 Chapter 8 Summary…………….……………………..………………….146 Chapter 9 Future Prospects…………………………..…………………..149 9.1 Study of Charge Trapping NAND Flash Memory…………………………..149 9.2 Study of Extended-pulse Laser Annealing for Low Temperature Processes……………………………………………………………………….150 Reference…………………….………………………..…………………...151 List of Tables Table 2.1 Market share of NAND flash memory by branded revenue………………..31 Table 2.2 Comparisons between solid-state drive (SSD) and hard disk (HDD)……...32 Table 2.3 Performance comparisons between NOR and NAND flash……..………….36 Table 3.1 The programming characteristics of MAOS and MANOS devices………..73 Table 4.1 The detailed film stacks and the gate materials of MONOS, MANOS and BE-SONOS.……………………………………………………………………………….88 Table 5.1 Typical parameters of BE-SONOS, MANOS and BE-MANOS devices in this work.………………………………………………………………………………….98 Table 6.1 Typical device structures used in this work.…………………….………..113 Table 7.1 The thermal properties of all the used materials at 27℃………………….142 List of Figures Fig. 2.1 Categories of semiconductor memory………………………………………….27 Fig. 2.2 Summary of semiconductor memories………………………………………..27 Fig. 2.3 Revenue partitions of (a) Semiconductor devices and (b) Semiconductor memories in 2006…………………………………………………………………………28 Fig. 2.4 Revenue forecast of semiconductor memories………………………………...28 Fig. 2.5 History of flash memories………………………………………………………29 Fig. 2.6 Applications and main suppliers of NOR flash memory……………………29 Fig. 2.7 Applications and main suppliers of NAND flash memory……………………30 Fig. 2.8 Market share of flash memories………………………………………………..30 Fig. 2.9 Application demand of NAND flash memory………………………………….31 Fig. 2.10 (a) MOS transistor and (b) Flash memory cell………………………………32 Fig. 2.11 Concept of flash memory………………………………………………………33 Fig. 2.12 Operation methods of floating gate flash memory…………………………..33 Fig. 2.13 (a) The equivalent circuit of NOR array flash memory and (b) the cross-sectional view of NOR flash along the bit line direction………………………..34 Fig. 2.14 Operation methods of NOR flash memory…………………………………...34 Fig. 2.15 (a) The equivalent circuit of NAND array flash memory and (b) the cross-sectional view of NAND flash along the bit line direction………………………35 Fig. 2.16 The equivalent circuits and voltages of NAND flash memory during (a) programming, and (b) erasing…………………………………………………………..35 Fig. 2.17 The equivalent circuits and voltages of NAND flash memory during read operation…………………………………………………………………………………36 Fig. 2.18 Scaling roadmap of FG-type NAND flash memory………………………….37 Fig. 2.19 Cycling endurance of flash memory if electrons are trapped inside the tunnel oxide……………………………………………………………………………………….37 Fig. 2.20 Band diagrams of tunnel oxide during data retention with (a) electrons and (b) holes in the floating gate……………………………………………………………38 Fig. 2.21 Schematic model of trap assisted tunneling………………………………….38 Fig. 2.22 (a) Operation voltages of NAND flash memory during read operation, and (b) soft program happens during read operation………………………………………39 Fig. 2.23 The behaviors of tail bits. (a) Number of tail bits after P/E cycles, and (b) Reappearing rate of tail bits……………………………………………………………..39 Fig. 2.24 SEM micrograph of NAND flash memory…………………………………40 Fig. 2.25 Gate coupling ratio as a function of design rule……………………………..40 Fig. 2.26 Schematic illustration of FG-FG interference………………………………41 Fig. 2.27 Reduced floating gate interference due to low-k dielectric material……….41 Fig. 2.28 Number of stored electrons in a NAND flash cell and the tolerable amount of the charge loss in each technology node………………………………………………..42 Fig. 2.29 (a) Scaling trend of DRAM, Flash and MPU/ASIC, and (b) Prediction of the corresponding lithography tool for each technology nodes……………………………42 Fig. 2.30 Schematic cell structure of SONOS flash memory…………………………..43 Fig. 2.31 (a) schematic cell structure of TANOS, and (b) SEM micrograph of TANOS device……………………………………………………………………………………43 Fig. 2.32 Energy band diagram of (a) SONOS and SANOS with poly-Si gate, and (b) SANOS with TaN metal gate at the erase mode………………………………………..44 Fig. 2.33 Data retention characteristics of TANOS devices at bake temp. of 250℃…44 Fig. 2.34 (a) Program and (b) erase characteristics of 63 nm NAND-type TANOS devices……………………………………………………………………………………..45 Fig. 2.35 Endurance of 63 nm NAND-type TANOS devices and floating-gate cells…45 Fig. 2.36 Cell Vth distribution of 64M cells by multi-level cell programming………46 Fig. 2.37 (a) schematic cell structure of BE-SONOS, and (b) the typical process condition of BE-SONOS…………………………………………………………………46 Fig. 2.38 Bandgap engineering concept for the BE-SONOS device…………………..47 Fig. 2.39 (a) Comparison of the –FN erase speed of BE-SONOS (15/20/25/70/90 Å), SONOS (20/70/90 Å) and SONOS (25/70/90 Å). The bias voltages are selected to make these samples to have approximately the same electric field. (b) Comparison of the 150 oC baking retention test for SONOS and BE-SONOS. A wide range of PV state (up to +4 V) and EV states (down to EV= -2V) are tested.…………………………….47 Fig. 2.40 Erase speed comparison for BE-SONOS with various ONO tunneling dielectrics………………………………………………………………………………….48 Fig. 2.41 P/E cycle endurance of the P+-poly gate capacitor…………………………..48 Fig. 2.42 Unit cell of a ABO3 perovskite structure……………………………………..49 Fig. 2.43 Schematic hysteresis loop of a ferroelectric capacitor……………………….49 Fig. 2.44 A unit cell of the destructive read-out (DRO) 1T/1C FeRAM………………50 Fig. 2.45 Cross-sectional diagram of COI FeRAM…………………………………….50 Fig. 3.1 (a) Erase curves and (b) program curves of Pt-gate MANOS, and (c) erase curves of TANOS…………………………………………………………………………67 Fig. 3.2 (a) Erase transient (VFB-time) curves of MANOS with various erase biases, and (b) J-E curves transformed from the VFB-time curves of Fig. 3.2 (a)…………...68 Fig. 3.3 (a) The erase curves of MONOS and MANOS devices. (b) The J-ETUN curves transformed from the erase curves with various erase biases shown in (a) by the transient analysis method. ………………………………………………………………69 Fig. 3.4 (a) Erase curves (VFB-time) of MANOS with different gate materials (Al and Pt). (b) J-E curves of Al-gate MANOS and Pt-gate MANOS………………………….70 Fig. 3.5 The erase curves with different re-fill conditions. The erase voltages are (a) -14V, and (b) –16V, respectively…………………………………………………………71 Fig. 3.6 The dependence of erase temperature on the erase characteristics of MANOS. (a) VFB-time curves with various erase biases and temperatures, and (b) J-E curves transformed from (a).……………………………………………………………………71 Fig. 3.7 The erase characteristics of MANOS erased from (a) PV state (VFB = 4V) and (b) fresh state (VFB = -0.8V), respectively……………………………………………….72 Fig. 3.8 The J-E curves transformed from Fig. 3.7…………………………………….72 Fig. 3.9 The structures used to study the roles of SiN and Al2O3. (a) MAOS device, (b) MNOS device and (c) MANOS device…………………………………………………..73 Fig. 3.10 The erase characteristics of (a) MANOS and (b) MAOS with various erase biases………………………………………………………………………………………74 Fig. 3.11 The J-E curves of MANOS and MAOS transformed from Fig. 3.10……….74 Fig. 3.12 Erase curves of Pt gate MNOS device with various erase biases…………..75 Fig. 3.13 Programming curves of P+ poly gate MNOS device with various programming biases by – FN tunneling………………………………………………..75 Fig. 3.14 TEM cross-sectional views of ANO dielectric with various annealing temperatures for 60 seconds……………………………………………………………..76 Fig. 3.15 (a) Erase curves of the MANOS devices with various post-annealing temperatures for the Al2O3 blocking layer. (b) The J-ETUN plot transformed from the erase curves by transient analysis……………………………………………………….76 Fig. 3.16 Retention characteristics of Pt gate MONOS and Pt gate MANOS………..77 Fig. 3.17 Erase transient current densities of MANOS devices with various Al2O3 deposition methods………………………………………………….……………………77 Fig. 3.18 Retention characteristics of Pt gate MANOS devices at 150 oC……………78 Fig. 3.19 Gate-injection current of the MANOS capacitors with different Al2O3 post-annealing temperature……………………………………………………………..78 Fig. 3.20 Erase curve of MANOS and the corresponding transient electric field in tunnel oxide and Al2O3 during the erasing……………………………………………..79 Fig. 3.21 Retention characteristics of MANOS devices with various annealing temperatures……………………………………………………………………………..79 Fig. 3.22 Retention characteristics of MANOS devices at various baking temperatures……………………………………………………………………………..80 Fig. 3.23 Erase characteristics of MANOS devices with different annealing atmosphere (oxygen and nitrogen) at 950 oC for 60 sec. (a) Erase transient (VFB-time) curves with various erase biases, and (b) J-E curves…………………………..………81 Fig. 3.24 Retention characteristics of MANOS devices with different annealing atmosphere (oxygen and nitrogen) at 950 oC for 60 sec………………………………..81 Fig. 4.1 Schematic structures of (a) MONOS, (b) MANOS, and (c) BE-SONOS devices……………………………………………………………………………………..88 Fig. 4.2 Erase transient (VFB-time) curves of MONOS, MANOS and BE-SONOS with various bias voltages……………………………………………………………………..89 Fig. 4.3 J-E curves of MONOS, MANOS, and BE-SONOS during the erasing……..89 Fig. 4.4 Schematic band diagram to illustrate the erase mechanisms of (a) MONOS, (b) MANOS, and (c) BE-SONOS………………………………………………………..90 Fig. 4.5 Long-term erase characteristics of MONOS, MANOS and BE-SONOS……91 Fig. 4.6 Transient electric fields in tunnel oxide (TUN) and top dielectric (TOX) for MONOS, MANOS and BE-SONOS during the erase………………………………….91 Fig. 4.7 Retention characteristics of MONOS, MANOS and BE-SONOS baked at 150 oC…………………………………………………………………………………………..92 Fig. 5.1 Structures of (a) BE-SONOS, (b) MANOS, and (c) BE-MANOS devices…...98 Fig. 5.2 Erase transient (VFB-time) curves for these 3 devices at VG= -18V…………..99 Fig. 5.3 J-E curves of the 3 devices extracted by the transient analysis.……………...99 Fig. 5.4 Erase transient (VFB-time) curves of BE-MANOS with various O1 thickness at VG= -18V……………………………………………………………………………...100 Fig. 5.5 J-E curves of BE-MANOS with various O1 thickness extracted by the transient analysis………………………………………………………………………..100 Fig. 5.6 Erase transient (VFB-time) curves of BE-MANOS with various O1 and O2 thickness at VG = -18V………………………………………………………………….101 Fig. 5.7 J-E curves of BE-MANOS with various O1 and O2 thickness extracted by the transient analysis………………………………………………………………………..101 Fig. 5.8 Programming characteristics of (a) BE-SONOS and (b) BE-MANOS with various programming bias voltages……………………………………………………102 Fig. 5.9 Erase transient (VFB-time) curves of BE-MANOS, BE-SONOS and MANOS with different gate materials at VG = -20V…………………………………………….103 Fig. 5.10 Transient electric fields in the O1 of ONO tunneling barrier and in the blocking layer for BE-MANOS and BE-SONOS with different gate materials during the erase at VG= -20V…………………………………………………………………..103 Fig. 5.11 Data retention of Pt gate BE-MANOS at 85 oC……………………………..104 Fig. 6.1 TEM micrograph of BE-MANOS with a SiO2 buffer layer…………………113 Fig. 6.2 Erase characteristics of MONOS (with Pt gate), and BE-SONOS with different gate materials. Al (n-type), TiN (mid-gap) and Pt (P-type) gate are compared………………………………………………………………………………...114 Fig. 6.3 Erase characteristics of BE-MANOS with a SiO2 buffer layer (S4) at different erase bias voltages……………………………………………………………………….114 Fig. 6.4 Erase characteristics of BE-SONOS with various top dielectric structures (O3 + Al2O3)…………………………………………………………………………………..115 Fig. 6.5 Erase speed comparison of BE-MANOS with different thickness combinations of O3 and Al2O3 (S4 and S5)……………………………………………116 Fig. 6.6 Erase hole tunneling current density for various BE-SONOS type devices..116 Fig. 6.7 Schematic band diagram to illustrate the gate electron injection in the conduction band of BE-SONOS, BE-MANOS and BE-MANOS with a SiO2 buffer layer………………………………………………………………………………………117 Fig. 6.8 Read disturb characteristics of (a) BE-MANOS with a SiO2 buffer layer (S4), and (b) BE-MANOS (S3)………………………………………………………………118 Fig. 6.9 Read number vs. Vread curves of BE-MANOS with a SiO2 buffer layer (S4) and BE-MANOS (S3)…………………………………………………………………119 Fig. 6.10 Retention of MANOS and various BE-SONOS type devices………………119 Fig. 6.11 P/E cycling endurance test of BE-MANOS with a SiO2 buffer layer (S4)...120 Fig. 6.12 Bake retention of BE-MANOS with a SiO2 buffer layer after different P/E cycles (S4)………………………………………………………………………………..120 Fig. 6.13 Erase characteristics of Pt-gate BE-SONOS and Al-gate BE-MANOS with various thicknesses of SiO2 buffer layers at VG= -15 V……………………………….121 Fig. 6.14 Erase transient current density extracted from Fig. 6.13………………….121 Fig. 6.15 Erase speed comparison of MANOS with and without oxide buffer layer..122 Fig. 6.16 Retention characteristics of BE-MANOS with various thicknesses of oxide buffer layers at 150 oC baking…………………………………………………….……122 Fig. 6.17 Read disturb test of BE-MANOS (13/20/25/50/40/60) with oxide buffer layer……………………………………………………………………………………123 Fig. 6.18 Read disturb of BE-MANOS with a 4 0 Å SiO2 buffer layer, extracted from Fig. 6.17.…………………………………………………………………………………123 Fig. 6.19 Read disturb characteristics of BE-MANOS with different thicknesses of SiO2 buffer layers……………………………………………………………………….124 Fig. 6.20 Cycling endurance of BE-MANOS with different thicknesses of SiO2 buffer layers...…………………………………………………………………………………124 Fig. 6.21 Retention comparison of BE-MANOS with oxide buffer layer, TiN gate BE-SONOS, BE-MANOS without oxide buffer layer, and MANOS without oxide buffer layer……………………………………………………………………………..125 Fig. 6.22 Erase characteristics of BE-MANOS with different Al2O3 thickness……..126 Fig. 6.23 Data retention of BE-MANOS with a SiO2 buffer layer but various Al2O3 thicknesses at 150 oC baking……………………………………………………………126 Fig. 6.24 Band diagrams of (a) SiO2 top dielectric, (b) thin Al2O3 with a SiO2 buffer layer, (c) thick Al2O3 with a SiO2 buffer layer during the erase. (d) Band diagram during data retention…………………………………………………………………...127 Fig. 7.1 Cross-sectional illustration of embedded COI FeRAM……………………140 Fig. 7.2 (a) Schematic illustration of pulse extender, and (b) pulse extender action..140 Fig. 7.3 (a) Schematic illustration of the laser power density for a short pulse and an extended pulse, (b) the temperature transient profiles (temperature vs. time) in PZT films, (c) the temperature distribution in the specimens……………………………..141 Fig. 7.4 SEM top-view micrographs of the partially crystalline PZT films, which are (a) non-laser-annealed, (b) laser annealed by a short-pulse laser system at 45 mJ/cm2 per pulse, (c) laser annealed by an extended-pulse laser system at 150 mJ/cm2 per pulse……………………………………………………………………………………...142 Fig. 7.5 (a) Normalized remanent polarizations of the partially crystalline PZT capacitors, which are laser-annealed by the extended-pulse and the short-pulse laser annealing systems (measured by the PUND method), (b) the hysteresis curve of (I), (c) the hysteresis curve of (II)……………………………………………………………143 Fig. 7.6 TEM micrographs of the partially crystalline PZT films after extended-pulse laser annealing at 150 mJ/cm2 per pulse with (a) 0 shot (non-laser-annealed), (b) 100 shots, (c) 1,000 shots, (d) 10,000 shots………………………………………………….144 Fig. 7.7 (a) The electrical pulses of the PUND method, (b) the relationship between 2Pr and the programming pulse width of the partially crystalline PZT capacitors after being laser-annealed by an extended-pulse laser system at 150 mJ/cm2 per pulse……………………………………………………………………………………145

    Reference
    [1] S.M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981.
    [2] N. Naruke, S. Taguchi and M. Wada, ”Stress Induced Leakage Current Limiting to Scale Down EEPROM Tunnel Oxide”, Tech. Digest 1988 International Electron Devices Meeting, pp.424-427, 1988.
    [3] P. Olivo, T. N. Nguyen, and B. Ricco, ”High-Field-Induced Degradation in Ultra-Thin SO2 Films”, IEEE Trans. on Electron Devices, vol. 35, pp. 2259-2267, 1988.
    [4] J. Maserjan and N. Zamani, “Observation of Positively Charged State Generation Near the Si/SiO2 Interface During Fowler-Nordheim Tunneling”, Journal of Vacuum Science and Technology, vol. 20, pp. 743, 1982.
    [5] Paulo Cappelletti, Carla Golla, Piero Olivo and Enrico Zanoni, Flash Memories, Kluwer Academic Publishers, Boston, 1999.
    [6] Reza Moazzami and Chenming Hu, ”Stress-induced Current in Thin Silicon Dioxide Films”, Tech. Digest 1992 International Electron Devices Meeting, pp.139-142, 1992.
    [7] David A. Baglee and Michael C. Smayling, ” The effects of write/erase cycling on data loss in EEPROMs”, Tech. Digest 1985 International Electron Devices Meeting, pp.624-626, 1985.
    [8] D.J. DiMaria, “Stress Induced Leakage Currents in Thin Oxides”, Microelectronic Engineering, vol. 28, pp. 63, 1995.
    [9] F. Arai, T. Maruyama and R. Shirota, “Extended Data Retention Process Technology for Highly Reliable Flash EEPROMs of 106 to 107 W/E cycles”, 1998 IEEE International Reliability Physics Symposium Proceedings, pp. 378-382, 1998.
    [10] M. Noguchi, T. Yaegashi, H. Koyama, M. Morikado, Y. Ishibashi, S. Ishibashi, K. Ino, K. Sawamura, T. Aoi, T. Maruyama, A. Kajita, E. Ito, M. Kishida, K. Kanda, K. Hosono, S. Miyamoto, F. Ito, Y. Hirata, G. Hemink, M. Higashitani, A. Mak, J. Chan, M. Koyanagi, S. Ohshima, H. Shibata, H. Tsunoda and S. Tanaka, ”A High-performance Multi-level NAND Flash Memory with 43nm-node Floating-gate Technology”, Tech. Digest 2007 International Electron Devices Meeting, pp.445-448, 2007.
    [11] Kinam Kim, ” Technology for sub-50nm DRAM and NAND Flash Manufacturing”, Tech. Digest 2005 International Electron Devices Meeting, pp. 323-326, 2005.
    [12] F. Arai, ”Future Outlook of Floating Gate Flash Memory”, 2006 International Conference on Solid State Devices and Materials, pp.292-293, 2006.
    [13] Kinam Kim, Jung Hyuk Choi, Jungdal Choi and Hong-Sik Jeong, ” The future prospect of nonvolatile memory”, 2005 IEEE VLSI-TSA International Symposium, pp. 88 - 94, 2005.
    [14] Jong-Ho Park, Sung-Hoi Hur, Joon-Hee Lee, Jin-Taek Park, Jong-Sun Sel, Jong-Won Kim, Sang-Bin Song, Jung-Young Lee, Ji-Hwon Lee, Suk-Joon Son, Yong-Seok Kim, Min-Cheol Park, Soo-Jin Chai, Jung-Dal Choi, U-In Chung, Joo-Tae Moon, Kyeong-Tae Kim, Kinam Kim and Byung-Il Ryu, ”8Gb MLC (Multi-Level Cell) NAND Flash Memory using 63nm Process Technology”, Tech. Digest 2004 International Electron Devices Meeting, pp. 873-876, 2004.
    [15] S.M. Sze, Semiconductor Devices: Physics and Technology, John Wiley & Sons, New York, 2001.
    [16] H.T. Lue, Y.H. Shih, K.Y. Hsieh, R. Liu, and C.Y. Lu, “Novel Soft Erase and Re-fill Methods for a P+-poly Gate Nitride-trapping Nonvolatile Memory Device with Excellent Endurance and Retention Properties”, IEEE 43rd Annual International Reliability Physics Symposium, pp.168-174, 2005.
    [17] Hang-Ting Lue, Szu-Yu Wang, Erh-Kun Lai, Kuang-Yeu Hsieh, Rich Liu and Chih Yuan Lu, “A BE-SONOS (Bandgap Engineered SONOS) NAND for Post-Floating Gate Era Flash Memory”, 2007 IEEE VLSI-TSA International Symposium, pp. 16 - 17, 2007.
    [18] Chang Hyun Lee, Kyung In Choi, Myoung Kwan Cho, Yun Heub Song, Kyu Charn Park, and Kinam Kim, “A Novel SONOS Structure of SiO2/SiN/Al2O3 with TaN Metal Gate for Multi-Giga Bit Flash Memories,” Tech. Digest 2003 International Electron Devices Meeting, pp. 26.5.1 - 26.5.4, 2003.
    [19] Hang-Ting Lue, Szu-Yu Wang, Erh-Kun Lai, Yen-Hao Shih, Sheng-Chih Lai, Ling-Wu Yang, Kuang-Chao Chen, Joseph Ku, Kuang-Yeu Hsieh, Rich Liu, and Chih-Yuan Lu, “BE-SONOS: A Bandgap Engineered SONOS with Excellent Performance and Reliability,” Tech. Digest 2005 International Electron Devices Meeting, pp. 547-550, 2005.
    [20] Yoocheol Shin, Jungdal Choi, Changseok Kang, Changhyun Lee, Ki-Tae Park, Jang-Sik Lee, Jongsun Sel, Viena Kim, Byeongin Choi, Jaesung Sim, Dongchan Kim, Hag-ju Cho and Kinam Kim, “A Novel NAND-type MONOS Memory using 63nm Process Technology for Multi-Gigabit Flash EEPROMs,” Tech. Digest 2005 International Electron Devices Meeting, pp.13.6.1 – 13.6.4, 2005.
    [21] Jang-Sik Lee, Chang-Seok Kang, Yoo-Cheol Shin, Chang-Hyun Lee, Ki-Tae Park, Jong-Sun Sel, Viena Kim, Byeong-In Choe, Jae-Sung Sim, Jungdal Choi, and Kinam Kim, “Data Retention Characteristics of MONOS Devices with High-k Dielectrics and High-work Function Metal-gates for Multi-gigabit Flash Memory,” 2005 International Conference on Solid State Devices and Materials, pp. 200-201, 2005
    [22] Chang-Hyun Lee, Changseok Kang, Jaesung Sim, Jang-Sik Lee, Juhyung kim, Yoocheol Shin, Ki-Tae Park, Sanghun Jeon, Jongsun Sel, Younseok Jeong, Byeongin Choi, Viena Kim, Wonseok Jung, Chung-Il Hyun, Jungdal Choi and Kinam Kim, “Charge Trapping Memory Cell of TANOS (Si-Oxide-SiN-Al2O3-TaN) Structure Compatible to Conventional NAND Flash Memory,” 2006 Non-Volatile Semiconductor Memory Workshop, pp. 54-55, 2006.
    [23] Youngwoo Park, Jungdal Choi, Changseok Kang, Changhyun Lee, Yuchoel Shin, Bonghyn Choi, Juhung Kim, Sanghun Jeon, Jongsun Sel, Jintaek Park, Kihwan Choi, Taehwa Yoo, Jaesung Sim, and Kinam Kim, “Highly Manufacturable 32Gb Multi – Level NAND Flash Memory with 0.0098 µm2 Cell Size using TANOS (Si - Oxide - Al2O3 - TaN) Cell Technology,” Tech. Digest 2006 International Electron Devices Meeting, pp.2.1.1 – 2.1.4, 2006.
    [24] Soon-Moon Jung, Jaehoon Jang, Wonseok Cho, Hoosung Cho, Jaehun Jeong, Youngchul Chang, Jonghyuk Kim Youngseop Rah, Yangsoo Son, Junbeom Park, Min-Sung Song, Kyoung-Hon Kim, Jin-Soo Lim and Kinam Kim, “Three Dimensionally Stacked NAND Flash Memory Technology Using Stacking Single Crystal Si Layers on ILD and TANOS Structure for Beyond 30nm Node,” Tech. Digest 2006 International Electron Devices Meeting, pp.2.3.1 – 2.3.4, 2006.
    [25] Chang-Hyun Lee, Jungdal Choi, Changseok Kang, Yoocheol Shin, Jang-Sik Lee, Jongsun Sel, Jaesung Sim, Sanghun Jeon, Byeong-In Choe, Dukwon Bae1, Kitae Park, and Kinam Kim, “Multi-Level NAND Flash Memory with 63 nm-node TANOS (Si-Oxide-SiN-Al2O3-TaN) Cell Structure,” Tech. Digest 2006 Symposium on VLSI Technology, pp.21 – 22, 2006.
    [26] http://www.samsung.com/PressCenter/PressRelease/
    [27] Hang-Ting Lue, Szu-Yu Wang, Yi-Hsuan Hsiao, Erh-Kun Lai, Ling-Wu Yang, Tahone Yang, Kuang-Chao Chen, Kuang-Yeu Hsieh, Rich Liu, and Chih Yuan Lu, “Reliability Model of Bandgap Engineered SONOS (BE-SONOS)”, Tech. Digest 2006 International Electron Devices Meeting, pp. 18.5.1-18.5.4, 2006.
    [28] Szu-Yu Wang, Hang-Ting Lue, Erh-Kun Lai, Ling-Wu Yang, Tahone Yang, Kuang-Chao Chen, Jeng Gong, Kuang-Yeu Hsieh, Rich Liu, and Chih Yuan Lu, “Reliability and Processing Effects of Bandgap Engineered SONOS (BE-SONOS) Flash Memory”, 2007 IEEE International Reliability Physics Symposium Proceedings, pp. 171-176, 2007.
    [29] Yi-Chan Chen, “Orientation control of Lanthanide (Nd,La)-substituted Bismuth Titanate Thin Films for Non-volatile Ferroelectric Random Access Memory Applications”, Ph.D. Thesis of National Tsing-Hua University, 2004.
    [30] M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Devices, Clarendon Press, Oxford, 1977.
    [31] S.L Lung, C.L. Liu, S.S. Chen, S.C. Lai, C.W. Tsai, T.T. Sheng, Tahui Wang, Sam Pan, T.B. Wu and Rich Liu, “Low Temperature Epitaxial Growth of PZT on Conductive Perovskite LaNiO3 Electrode for Embedded Capacitor-Over- Interconnect (COI) FeRAM Application,” Tech. Digest 2001 International Electron Devices Meeting, pp. 275 - 278, 2001.
    [32] S. Kobayashi, K. Amanuma, H. Mori, N. Kasai, Y. Maejima, A. Seike, N. Tanabe, T. Tatsumi, J. Yamada, T. Miwa, H. Koike, H. Hada and H. Toyoshima, “64Kbit CMVP FeRAM Macro with Reliable Retention/Imprint characteristics,” Tech. Digest 2000 International Electron Devices Meeting, pp. 783 - 786, 2000.
    [33] N. Inoue, T. Nakura, and Y. Hayashi, “Low Thermal-budget Fabrication of Sputtered-PZT Capacitor on Multilevel Interconnects for Embedded FeRAM,” Tech. Digest 2000 International Electron Devices Meeting, pp. 797 - 800, 2000.
    [34] H.T. Lue, Y.H. Shih, K.Y. Hsieh, R. Liu, and C.Y. Lu, “A transient analysis method to characterize the trap vertical location in nitride-trapping devices”, IEEE Electron Device Letters, vol. 25, pp.816-818, 2004.
    [35] Yu Wang and Marvin H. White, “An analytical retention model for SONOS nonvolatile memory devices in the excess electron state”, Solid-State Electronics, vol. 49, pp. 97-107, 2005.
    [36] Shizuo Fujita and Akio Sasaki, “Dangling Bonds in Memory-Quality Silicon Nitride Films”, Journal of The Electrochemical Society, vol. 132, pp. 398-402, 1985.
    [37] Frank R. Libsch and Marvin H. White, “Charge Transport and Storage of Low Programming Voltage SONOS/MONOS Devices”, Solid-State Electronics, vol. 33, pp. 105-126, 1990.
    [38] T. Ishida, Y. Okuyama, and R. Yamada, “Characterization of Charge Traps in Metal-Oxide-Nitride-Oxide-Semiconductor (MONOS) Structures for Embedded Flash Memories”, IEEE 44th Annual International Reliability Physics Symposium, pp.516-522, 2006.
    [39] Sheng-Chih Lai, Hang-Ting Lue, Jong-Yu Hsieh, Ming-Jui Yang, Yan-Kai Chiou,Chia-Wei Wu, Tai-Bor Wu, Guang-Li Luo, Chao-Hsin Chien, Erh-Kun Lai, Kuang-Yeu Hsieh, Rich Liu and Chih-Yuan Lu, “Study of the Erase Mechanism of MANOS (Metal/Al2O3/SiN/SiO2/Si) Device”, IEEE Electron Device Letters, vol. 28, pp.643-645, 2007.
    [40] Sheng-Chih Lai, Hang-Ting Lue, Jung-Yu Hsieh, Ming-Jui Yang, Yan-Kai Chiou, Chia-Wei Wu, Tai-Bor Wu, Guang-Li Luo, Chao-Hsin Chien, Erh-Kun Lai, Kuang-Yeu Hsieh, Rich Liu and Chih-Yuan Lu, “A Study on the Erase and Retention Mechanisms for MONOS, MANOS, and BE-SONOS Non-Volatile Memory Devices”, 2007 IEEE VLSI-TSA International Symposium, pp. 14 - 15, 2007.
    [41] Sheng-Chih Lai, Hang-Ting Lue, Ming-Jui Yang, Jung-Yu Hsieh, Szu-Yu Wang, Tai-Bor Wu, Guang-Li Luo, Chao-Hsin Chien, Erh-Kun Lai, Kuang-Yeu Hsieh, Rich Liu and Chih-Yuan Lu, “MA BE-SONOS: A Bandgap Engineered SONOS using Metal Gate and Al2O3 Blocking Layer to Overcome Erase Saturation,” 2007 Non-Volatile Semiconductor Memory Workshop, pp. 88-89, 2007.
    [42] Y. Horii, Y. Hikosaka, Akio Itoh, K. Matsuura, M. Kurasawa, G. Komuro, K. Maruyama, T. Eshita and S. Kashiwagi, “4 Mbit Embedded FRAM for High Performance System on Chip (SoC) with Large Switching Charge, Reliable Retention and High Imprint Resistance,” Tech. Digest 2002 International Electron Devices Meeting, pp. 539 - 542, 2002.
    [43] X.M. Lu, J.S. Zhu, X.F. Huang, C.Y. Lin and Y.N. Wang, “Laser-induced Phase Transformation From Amorphous to Perovskite in PbZr0.44Ti0.56O3 Films with the Substrate at Room Temperature,” Appl. Phys. Lett., vol. 65, pp. 2015-2017, 1994.
    [44] X.M. Lu, J.S. Zhu, W.S. Hu, Z.G. Liu, and Y.N. Wang, “Pulsed Excimer (KrF) Laser Induced Crystallization of PbZr0.44Ti0.56O3 Amorphous Films,” Appl. Phys. Lett., vol. 66, pp. 2481-2483, 1995.
    [45] Z. Zhang, J. Zhu, D. Su, J. Liu, H. Chen, Y. Wang, L. Kang, J. Zhou, S. Yang, and P. Wu, ”Laser Annealing of SrBi2Ta2O9 Thin Films,” Thin Solid Films, vol. 375, pp. 172 - 175, 2000.
    [46] O. Baldus, W. Krasser, S. Hoffmann, R. Waser, and E.W. Kreutz, ”Laser Annealing Studies of Barium Strontium Titanate Thin Films Using Short Laser Pulses,” Integrated Ferroelectrics, vol. 30, pp. 129-138, 2000.
    [47] P.P. Donohue and M.A. Todd, ”Pulse-Extended Excimer Laser Annealing of Lead Zirconate Titanate Thin Films,” Integrated Ferroelectrics, vol. 31, pp. 285-296, 2000.
    [48] M.S. Chen, T.B. Wu, and J.M. Wu, “Effect of Textured LaNiO3 Electrode on the Fatigue Improvement of Pb(Zr0.53Ti0.47)O3 Thin Films,” Appl. Phys. Lett., vol. 68, pp. 1430-1432, 1996.
    [49] P. Baeri, S.U. Campisano, G. Foti, and E. Rimini, “A Melting Model for Pulsing-laser Annealing of Implanted Semiconductors,” J. Appl. Phys., vol. 50, pp. 788-797, 1979.
    [50] B.W. Arden and K.N. Astill, Numerical Algorithms: Origins and Applications, Addison-Wesley, pp. 280, 1970.
    [51] G.W.C. Kaye and T.H. Laby, Tables of Physical and Chemical Constants, 15th Ed., Longman Scientific and Technical, pp. 58, 1993.
    [52] Database of Sopra Spectroscopic Ellipsometer.
    [53] B. Yang, T.K. Song, S. Aggarwal, and R. Ramesh, “Low Voltage Performance of Pb(Zr, Ti)O3 Capacitors Through Donor Doping,” Appl. Phys. Lett., vol. 71, pp. 3578-3580, 1997.
    [54] K. Aoki, T. Sakoda, and Y. Fukuda, “Characterization of Switching Properties of Lead-Zirconate-Titanate Thin Films in Ti-Rich Phase,” Jpn. J. Appl. Phys., vol 37, pp. L522-L524, 1998.
    [55] Chi Kong Kwok and Seshu B. Desu, “Formation Kinetics of PbZrxTi1-xO3 Thin Fims,” J. Mater. Res., vol. 9, pp. 1728- 1733, 1994.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE