研究生: |
賀煦雯 |
---|---|
論文名稱: |
添加層狀雙氫氧化物於膠態染料敏化太陽能電池之應用 |
指導教授: | 呂世源 |
口試委員: |
衛子健
簡淑華 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 染料敏化太陽能電池 、膠態電解質 、層狀雙氫氧化物 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
液態電解液所組成的染料敏化太陽能電池(Dye-sensitized solar cells, DSSC)長期以來,有易揮發、漏液、長效性不佳的缺點。因此,希望以膠態電解質或固態電解質來取代之。固態電解質長久以來都有與光電極接觸不良,使得光電轉換效率無法明顯提升的問題。近年來,膠態電解質已在DSSC上有很好的應用,相較於固態,膠態電解質與光電極的接觸性較佳,因此,本實驗選擇以膠態電解質做為研究方向。
本研究中,使用屬於陰離子型黏土的層狀材料:Layered Double Hydroxides (LDH)。分別利用分離成核熟化法及低過飽和沉澱法合成ZnAl-CO3與ZnAl-Cl作為PVDF-HFP膠態電解質之添加劑。在電池效率方面,液態DSSC電池效率可達8.13 %,添加10 wt%PVDF-HFP之高分子DSSC電池效率為7.48 %,而添加1 wt%的ZnAl-CO3/PVDF-HFP(後面文章皆把PVDF-HFP部分省略,以簡化文章篇幅)後其效率可達8.11 %;0.5 wt%的ZnAl-Cl/PVDF-HFP(同前)後其效率可達8.11 %,其效率與液態DSSC相近。並在VOC方面有顯著的增益,液態DSSC電池之VOC為0.74 V,添加10 wt% PVDF-HFP之高分子DSSC電池之VOC為0.74 V,而添加1 wt%的ZnAl-CO3後其VOC可達0.79 V;1 wt%的ZnAl-Cl之VOC可達0.79 V。經由電化學交流阻抗與傳輸線模型分析可知,當VOC提升時,再結合電阻較大,且電子壽命增加,證明此添加物可減少電子的再結合現象。另外,經由cyclic voltammetry (CV)分析,發現其電解質的氧化還原位置有明顯地往正電位移動,應是造成VOC增加的原因之一。而在長效性測試方面,以500小時為量測基準下,10 wt% PVDF-HFP條件之電池之長效為原始的101.8 %;而液態電解液電池,經過480小時後,其效率為初始的91.9 %。而最低添加比例0.25 wt%的ZnAl-CO3與ZnAl-Cl的電池長效性分別可維持原來效率的96 %與99 %的表現,表示微量添加ZnAl-LDH仍有助益。
1. 濱川圭弘, "光電太陽電池設計與應用," 五南圖書出版有限公司, (2009).
2. 呂宗昕, "全面進攻奈米科技與太陽電池," 天下遠見, (2009).
3. A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Gratzel, "Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency," Science, 334(6056), 629-634(2011).
4. H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, "Dye sensitized zinc-oxide - aqueous-electrolyte - platinum photocell," Nature, 261(5559), 402-403(1976).
5. B. Oregan and M. Gratzel, "A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films," Nature, 353(6346), 737-740(1991).
6. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 39)," Progress in Photovoltaics: Research and Applications, 20(1), 12-20(2012).
7. 彭懷夫, "中孔性二氧化鈦薄膜於染料敏化太陽能電池之應用," 國立東華大學化學研究所 碩士論文, (2004).
8. X. Wang, S. A. Kulkarni, B. I. Ito, S. K. Batabyal, K. Nonomura, C. C. Wong, M. Gratzel, S. G. Mhaisalkar, and S. Uchida, "Nanoclay gelation approach toward improved dye-sensitized solar cell efficiencies: an investigation of charge transport and shift in the TiO2 conduction band," Acs Applied Materials and Interfaces, 5(2013).
9. C. W. Tu, K. Y. Liu, A. T. Chien, M. H. Yen, T. H. Weng, K. C. Ho, and K. F. Lin, "Enhancement of photocurrent of polymer-gelled dye-sensitized solar cell by Incorporation of exfoliated montmorillonite nanoplatelets," Journal of Polymer Science: Part A: Polymer Chemistry, 46(2008).
10. C. H. Lee, K. Y. Liu, S. H. Chang, K. J. Lin, J. J. Lin, K. C. Ho, and K. F. Lin, "Gelation of ionic liquid with exfoliated montmorillonite nanoplatelets and its application for quasi-solid-state dye-sensitized solar cells," Journal of Colloid and Interface Science, 363(2011).
11. Y. Geng, Y. T. Shi, L. D. Wang, B. B. Ma, R. Gao, Y. F. Zhu, H. P. Dong, and Y. Qiu, "Photovoltage improvements and recombination suppression by montmorillonite addition to PEO gel electrolyte for dye-sensitized solar cells," Physical Chemistry Chemical Physics, 13(6), 2417-2421(2011).
12. Y. H. Lai, C. Y. Lin, J. G. Chen, C. C. Wang, K. C. Huang, K. Y. Liu, K. F. Lin, J. J. Lin, and K. C. Ho, "Enhancing the performance of dye-sensitized solar cells by incorporating nanomica in gel electrolytes," Solar Energy Materials and Solar Cells, 94(4), 668-674(2010).
13. A. Inayat, M. Klumpp, and W. Schwieger, "The urea method for the direct synthesis of ZnAl layered double hydroxides with nitrate as the interlayer anion," Applied Clay Science, 51(4), 452-459(2011).
14. A. Fraccarollo, M. Cossi, and L. Marchese, "DFT simulation of Mg/Al hydrotalcite with different intercalated anions: Periodic structure and solvating effects on the iodide/triiodide redox couple," Chemical Physics Letters, 494(4-6), 274-278(2010).
15. F. R. Costa, A. Leuteritz, U. Wagenknecht, M. a. D. Landwehr, D. Jehnichen, L. Haeussler, and G. Heinrich, "Alkyl sulfonate modified LDH: Effect of alkyl chain length on intercalation behavior, particle morphology and thermal stability," Applied Clay Science, 44(1-2), 7-14(2009).
16. C. G. Silva, Y. Bouizi, V. Fornes, and H. Garcia, "Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water," Journal of the American Chemical Society, 131(2009).
17. D. G. Evans and R. C. T. Slade, "Structural aspects of layered double hydroxides," (2005).
18. J. He, M. Wei, B. Li, Y. Kang, D. G. Evans, and X. Duan, "Preparation of Layered Double Hydroxides," 11989-119(2006).
19. N. Morel-Desrosiers, J. Pisson, Y. Israeli, C. Taviot-Gueho, J. P. Besse, and J. P. Morel, "Intercalation of dicarboxylate anions into a Zn-Al-Cl layered double hydroxide: microcalorimetric determination of the enthalpies of anion exchange," Journal of Materials Chemistry, 13(10), 2582-2585(2003).
20. G. M. Lombardo and G. C. Pappalardo, "Thermal effects on mixed metal (Zn/Al) layered double hydroxides: Direct modeling of the X-ray powder diffraction line shape through molecular dynamics simulations," Chemistry of Materials, 20(17), 5585-5592(2008).
21. M. Islam and R. Patel, "Synthesis and physicochemical characterization of Zn/Al chloride layered double hydroxide and evaluation of its nitrate removal efficiency," Desalination, 256(1-3), 120-128(2010).
22. S. V. Prasanna, P. V. Kamath, and C. Shivakumara, "Interlayer structure of iodide intercalated layered double hydroxides (LDHs)," Journal of Colloid and Interface Science, 344(2), 508-512(2010).
23. L. Aimoz, C. Taviot-Gueho, S. V. Churakov, M. Chukalina, R. Dahn, E. Curti, P. Bordet, and M. Vespa, "Anion and cation order in Iodide-bearing Mg/Zn–Al layered double hydroxides," The Journal of Physical Chemistry C, 116(9), 5460-5475(2012).
24. M. Bastianini, D. Costenaro, C. Bisio, L. Marchese, U. Costantino, R. Vivani, and M. Nocchetti, "On the intercalation of the iodine-iodide couple on layered double hydroxides with different particle sizes," Inorganic Chemistry, 51(4), 2560-8(2012).
25. Y. J. Feng, D. Q. Li, Y. Wang, D. G. Evans, and X. Duan, "Synthesis and characterization of a UV absorbent-intercalated Zn-Al layered double hydroxide," Polymer Degradation and Stability, 91(4), 789-794(2006).
26. I. Crespo, C. Barriga, V. Rives, and M. A. Ulibarri, "Intercalation of iron hexacyano complexes in Zn,Al-hydrotalcite," Solid State Ionics, 101729-735(1997).
27. J. L. Guimaraes, R. Marangoni, L. P. Ramos, and F. Wypych, "Covalent grafting of ethylene glycol into the Zn-Al-CO3 layered double hydroxide," Journal of Colloid and Interface Science, 227(2), 445-451(2000).
28. L. Teruel, Y. Bouizi, P. Atienzar, V. Fornes, and H. Garcia, "Hydrotalcites of zinc and titanium as precursors of finely dispersed mixed oxide semiconductors for dye-sensitized solar cells," Energy & Environmental Science, 3(1), 154-159(2010).
29. M. Wei, M. F. Shao, J. B. Han, D. G. Evans, and X. Duan, "The synthesis of hierarchical Zn-Ti layered double hydroxide for efficient visible-light photocatalysis," Chemical Engineering Journal, 168(2), 519-524(2011).
30. R. J. Lu, X. Xu, J. P. Chang, Y. Zhu, S. L. Xu, and F. Z. Zhang, "Improvement of photocatalytic activity of TiO2 nanoparticles on selectively reconstructed layered double hydroxide," Applied Catalysis B: Environmental, 111-112389-396(2012).
31. B. Liu and E. S. Aydil, "Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells," Journal of the American Chemical Society, 131(11), 3985-3990(2009).
32. D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles, and I. Riess, "Nature of photovoltaic action in dye-sensitized solar cells," Journal of Physical Chemistry B, 104(9), 2053-2059(2000).
33. D. Matthews, P. Infelta, and M. Gratzel, "Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes," Solar Energy Materials and Solar Cells, 44(2), 119-155(1996).
34. Y. Diamant, S. G. Chen, O. Melamed, and A. Zaban, "Core-shell nanoporous electrode for dye sensitized solar cells: the effect of the SrTiO3 shell on the electronic properties of the TiO2 core," Journal of Physical Chemistry B, 107(9), 1977-1981(2003).
35. A. Hagfeldt and M. Gratzel, "Light-induced redox reactions in nanocrystalline systems," Chemical Reviews, 95(1), 49-68(1995).
36. 林雅秀, "膠態雞尾酒有機染料敏化太陽能電池之研究," 國立成功大學 化學工程學系碩士論文, (2009).
37. P. Wang, S. M. Zakeeruddin, I. Exnar, and M. Gratzel, "High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte," Chemical Communications, (24), 2972-2973(2002).
38. M. Berginc, M. Hocevar, U. O. Krasovec, A. Hinsch, R. Sastrawan, and M. Topic, "Ionic liquid-based electrolyte solidified with SiO2 nanoparticles for dye-sensitized solar cells," Thin Solid Films, 516(14), 4645-4650(2008).
39. C. L. Chen, H. S. Teng, and Y. L. Lee, "In Situ Gelation of Electrolytes for Highly Efficient Gel-State Dye-Sensitized Solar Cells," Advanced Materials, 23(36), 4199(2011).
40. W. Kwon, Y. J. Chang, Y. C. Park, H. M. Jang, and S. W. Rhee, "A light scattering polymer gel electrolyte for high performance dye-sensitized solar cells," Journal of Materials Chemistry, 22(13), 6027-6031(2012).
41. C. H. Law, S. C. Pathirana, X. O. Li, A. Y. Anderson, P. R. F. Barnes, A. Listorti, T. H. Ghaddar, and B. C. O'regan, "Water-based electrolytes for dye-sensitized solar cells," Advanced Materials, 22(2010).
42. Y. S. Jung, B. Yoo, M. K. Lim, S. Y. Lee, and K. J. Kim, "Effect of Triton X-100 in water-added electrolytes on the performance of dye-sensitized solar cells," Electrochimica Acta, 54(2009).
43. H. Zhao, X. Yin, H. Li, Y. Lin, and Y. X. Weng, "Explanation of effect of added water on dye-sensitized nanocrystalline TiO2 solar cell: correlation between performance and carrier relaxation kinetics," Chinese Physics Letters, 24(11), 3272-3275(2007).
44. F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt, "Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy," Solar Energy Materials and Solar Cells, 87(1-4), 117-131(2005).
45. F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. B. Kuang, S. M. Zakeeruddin, and M. Gratzel, "Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids," Journal of Physical Chemistry C, 111(17), 6550-6560(2007).
46. Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, and H. Imai, "Characteristics of high efficiency dye-sensitized solar cells," Journal of Physical Chemistry B, 110(50), 25210-25221(2006).
47. E. Barea, X. Q. Xu, V. Gonzalez-Pedro, T. Ripolles-Sanchis, F. Fabregat-Santiago, and J. Bisquert, "Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nanorod based dye sensitized solar cells," Energy & Environmental Science, 4(9), 3414-3419(2011).
48. H. F. Lee, J. J. Kai, P. C. Liu, W. C. Chang, F. Y. Ouyang, and H. T. Chan, "A comparative study of charge transport in quasi-solid state dye-sensitized solar cells using polymer or nanocomposite gel electrolytes," Journal of Electroanalytical Chemistry, 68745-50(2012).
49. H. Tang, A. Kitani, and M. Shiotani, "Cyclic voltammetry of KI at polyaniline-filmed Pt electrodes .1. Formation of polyaniline-iodine charge transfer complexes," Journal of Applied Electrochemistry, 26(1), 36-44(1996).
50. M. P. De Jong, A. W. D. Van Der Gon, X. Crispin, W. Osikowicz, W. R. Salaneck, and L. Groenendaal, "The electronic structure of n- and p-doped phenyl-capped 3,4-ethylenedioxythiophene trimer," Journal of Chemical Physics, 118(14), 6495-6502(2003).
51. 顧書源, "四級銨鹽為基礎之室溫離子液體做為電解質溶劑於敏化太陽能電池上之應用," 國立清華大學 化學工程學系 碩士論文, (2010).
52. 沈育仁, "CdS量子點敏化劑及高分子/奈米粒子複合膠態電解質在染料敏化太陽能電池應用之研究," (2008).
53. C. M. L. Robert A. Scott, Applications of Physical Methods to Inorganic and Bioinorganic Chemistry. Electrochemistry, ed. M.C.E.a.K.J. Brewer2007: Wiley.
54. 高莉,張興儒,段國萍,陳莉薇, "鋁鎂水滑石的合成與表徵," 青海大學學報(自然科學版), 28(2010).
55. X. Wang, R. Deng, S. A. Kulkarni, X. Y. Wang, S. S. Pramana, C. C. Wong, M. Gratzel, S. Uchida, and S. G. Mhaisalkar, "Investigation of the role of anions in hydrotalcite for quasi-solid state dye-sensitized solar cells application," Journal of Materials Chemistry A, 1(2013).
56. http://en.wikipedia.org/wiki/Ionic_radius#Determination_of_ionic_radii.
57. K. C. Huang, R. Vittal, and K. C. Ho, "Effects of crown ethers in nanocomposite silica-gel electrolytes on the performance of quasi-solid-state dye-sensitized solar cells," Solar Energy Materials and Solar Cells, 94(4), 675-679(2010).
58. 江怡君, "二氧化鈦氣凝膠應用於敏化太陽能電池," 國立清華大學 化學工程研究所 碩士論文, (2011).
59. S. Y. Tai, C. J. Liu, S. W. Chou, F. S. S. Chien, J. Y. Lin, and T. W. Lin, "Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells," Journal of Materials Chemistry, 22(2012).
60. G. Boschloo and A. Hagfeldt, "Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells," Accounts of Chemical Research, 42(2009).