研究生: |
陳玉慶 Tran Ngoc Khanh |
---|---|
論文名稱: |
金屬有機框架衍生鹼觸媒作為催化碳酸二甲酯轉化反應之應用 Metal-Organic Framework-derived Base Catalyst for Conversion of Dimethyl Carbonate to Glycerol Carbonate |
指導教授: |
蔡德豪
Tsai, De-Hao |
口試委員: |
潘詠庭
Pan, Yung-Tin 陳炳宏 Chen, Bing-Hung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 金屬-有機框架 、轉酯化 、觸媒 、丙三醇碳酸酯 |
外文關鍵詞: | Metal-organic framework, Transesterification, Catalysis, Glycerol carbonate |
相關次數: | 點閱:67 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這項研究中,我們專注於開發一種源自金屬有機骨架(MOF)的鹼催化
劑,用於碳酸二甲酯(DMC)酯交換為碳酸甘油酯(GLC)。碳酸甘油酯 (GLC)
具有一系列優點,包括生物降解性、多功能性及其碳捕獲和利用的潛力。鹼催化
劑透過促進反應物的活化、增強親核性、加速反應動力學以及實現催化劑再生,
在 GLC 合成中發揮至關重要的作用。在這項研究中,金屬有機骨架(MOF)衍
生的雜化結構 CaO-MgO@Al2O3 被開發為鹼催化劑,以促進甘油與碳酸二甲酯
(DMC)的酯交換反應形成 GLC。結果表明,水熱加濕浸漬路線形成了 Ca、Mg
和 Al 元素均勻分散的雜化奈米結構。此外,合成的催化劑表現出顯著高的比表
面積和鹼度(2.656 mmol g-1)。可實現高選擇性(>99%)和高 GLC 產率(96.2%;208.9 mmol g-cat-1)。該研究論證了 MOF 衍生的雜化結構用於增強 DMC 酯交換成 GLC 的鹼催化的合理設計理念,提供了反應條件溫和、轉化率高的有效解決方案。
In this study, we focus on developing a base catalyst derived from metal–organic framework (MOF) for the transesterification of dimethyl carbonate (DMC) to glycerol carbonate (GLC). Glycerol carbonate (GLC) offers a range of benefits including biodegradability, versatility, and its potential for carbon capture and utilization. Base catalysts play a crucial role for GLC synthesis by facilitating the
activation of reactants, enhancing nucleophilicity, accelerating reaction kinetics, and enabling catalyst regeneration. In this study, metal–organic framework (MOF) derived hybrid structure, CaO-MgO@Al2O3, was developed as a base catalyst to promote transesterification of glycerol with dimethyl carbonate (DMC) to form GLC. The results show that hydrothermal plus wet-impregnation routes formed the hybrid nanostructure with homogenously dispersed Ca, Mg and Al elements. Further, the synthesized catalysts showed significantly high specific surface area and basicity (2.656 mmol g-1). High selectivity (>99%) and high GLC yield (96.2%; 208.9 mmol gcat-1
) were achievable. This study demonstrated the rational design concept of MOFderived hybrid structures used in the enhancement of base catalysis fortransesterification of DMC to GLC, offering an effective solution with mild reaction conditions and high conversion.
[1] X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen, Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis, Chemical Reviews, 120 (2020) 7984-8034.
[2] C. Zhang, L. Wang, Z. Han, P. He, Y. Cao, J. Li, H. Li, Efficient hydrogenation of ethylene carbonate derived from CO2 to synthesize methanol and ethylene glycol over core-shell Cu@GO catalyst, Green Chemical Engineering, 3 (2022) 228-239.
[3] L.F. Vega, D. Bahamon, I.I.I. Alkhatib, Perspectives on Advancing Sustainable CO2 Conversion Processes: Trinomial Technology, Environment, and Economy, ACS Sustainable Chemistry & Engineering, 12 (2024) 5357-5382.
[4] E. Leino, P. Mäki-Arvela, V. Eta, D.Y. Murzin, T. Salmi, J.P. Mikkola, Conventional synthesis methods of short-chain dialkylcarbonates and novel production technology via direct route from alcohol and waste CO2, Applied Catalysis A: General, 383 (2010) 1-13.
[5] M. Honda, S. Kuno, N. Begum, K.-i. Fujimoto, K. Suzuki, Y. Nakagawa, K. Tomishige, Catalytic synthesis of dialkyl carbonate from low pressure CO2 and alcohols combined with acetonitrile hydration catalyzed by CeO2, Applied Catalysis A: General, 384 (2010) 165-170.
[6] P. Kumar, R. Kaur, S. Verma, S. Singh, U.L. Štangar, Tuning the catalytic active sites of TiO2/CeO2 interactions to improve oxygen vacancy and lattice parameters for CO2 conversion to green fuel additive, Catalysis Today, 433 (2024) 114652.
[7] T.T.H. Nguyen, W.S. Putro, S. Hamura, M. Nakashige, J.-C. Choi, N. Fukaya, S. Taniguchi, T. Yamaki, N. Hara, S. Kataoka, Comparative techno-economic and environmental analysis of a new CO2 to diethyl carbonate production process, Journal of Cleaner Production, 389 (2023) 136046.
[8] P. Tundo, M. Selva, The Chemistry of Dimethyl Carbonate, Accounts of Chemical Research, 35 (2002) 706-716.
[9] Q. Cai, B. Lu, L. Guo, Y. Shan, Studies on synthesis of dimethyl carbonate from methanol and carbon dioxide, Catalysis Communications, 10 (2009) 605-609.
[10] P. Kongpanna, V. Pavarajarn, R. Gani, S. Assabumrungrat, Techno-economic evaluation of different CO2-based processes for dimethyl carbonate production, Chemical Engineering Research and Design, 93 (2015) 496-510.
[11] W. Xu, Z. Xu, W. Yao, L. Hu, K. Ding, G. Wu, G. Xiao, L. Gao, Directly synthesis of dimethyl carbonate from CO2 and methanol over UiO-66 @CeO2 Catalyst, Applied Catalysis A: General, 662 (2023) 119262.
[12] S. Rojas-Buzo, D. Salusso, A. Jouve, E. Bracciotti, M. Signorile, S. Bordiga, CO2 to dimethylcarbonate synthesis: Surface defects and oxygen vacancies engineering on MOF-derived CexZr1−xO2−y catalysts, Applied Catalysis B: Environment and Energy, 346 (2024) 123723.
[13] X. Zhang, X. Ke, Z. Zheng, H. Liu, H. Zhu, TiO2 nanofibers of different crystal phases for transesterification of alcohols with dimethyl carbonate, Applied Catalysis B: Environmental, 150-151 (2014) 330-337.
[14] F. Guo, L. Wang, Y. Cao, P. He, H. Li, Efficient synthesis of ethylene carbonate via transesterification of ethylene glycol with dimethyl carbonate over Mg3Al1−xCexO composite oxide, Applied Catalysis A: General, 662 (2023) 119273.
[15] C. Liu, Z. Chi, Y. Yan, Z. Lu, X.-G. Li, J.-M. Yan, M. Luo, W. Xiao, Tunable Transesterification of Dimethyl Carbonate with Ethanol on K2CO3/Al2O3 Catalysts: Kinetic Modeling, Industrial & Engineering Chemistry Research, 62 (2023) 1264-1276.
[16] T.T. Nguyen Hoang, D.-H. Tsai, Low-temperature methanol synthesis via (CO2 + CO) combined hydrogenation using Cu-ZnO/Al2O3 hybrid nanoparticle cluster, Applied Catalysis A: General, 645 (2022) 118844.
[17] Y.-A. Hsueh, Y.C. Chuah, C.-H. Lin, D.-H. Tsai, Aerosol-Assisted Synthesis of Metal–Organic Framework-Derived Hybrid Nanomaterials for Reverse Water–Gas Shift Reaction, ACS Applied Nano Materials, 5 (2022) 8883-8893.
[18] U. Romano, R. Tesel, M.M. Mauri, P. Rebora, Synthesis of Dimethyl Carbonate from Methanol, Carbon Monoxide, and Oxygen Catalyzed by Copper Compounds, Industrial & Engineering Chemistry Product Research and Development, 19 (1980) 396-403.
[19] M.F. O’Neill, M. Sankar, U. Hintermair, Sustainable Synthesis of Dimethyl- and Diethyl Carbonate from CO2 in Batch and Continuous Flow─Lessons from Thermodynamics and the Importance of Catalyst Stability, ACS Sustainable Chemistry & Engineering, 10 (2022) 5243-5257.
[20] D. Wagan, The NBS tables of chemical thermodynamic properties, J. Phys. Chem. Ref. Data., 11 (1982) 181.
[21] H.W. Tan, A.R. Abdul Aziz, M.K. Aroua, Glycerol production and its applications as a raw material: A review, Renewable and Sustainable Energy Reviews, 27 (2013) 118-127.
[22] S.M. Gade, V.B. Saptal, B.M. Bhanage, Perception of glycerol carbonate as green chemical: Synthesis and applications, Catalysis Communications, 172 (2022) 106542.
[23] D. Wang, D. Bai, J. Xiong, Z. Chen, X. Zhao, H. Wu, J. Shan, S. Wei, X. Zhang, The atom-efficient production of glycerol carbonate via transesterification between dimethyl carbonate and glycerol over fluorinated Al2O3-ZrO2 solid solution catalysts with suitable acidic-basic property, Applied Catalysis A: General, 665 (2023) 119370.
[24] P. Koranian, A.K. Dalai, R. Sammynaiken, Structural study of mixed metal oxide catalysts comprising Mg, Ca, and Al used for upgrading biodiesel byproduct glycerol to glycerol carbonate, Applied Catalysis A: General, (2024) 119727.
[25] W.K. Teng, G.C. Ngoh, R. Yusoff, M.K. Aroua, A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters, Energy Conversion and Management, 88 (2014) 484-497.
[26] W. Praikaew, W. Kiatkittipong, F. Aiouache, V. Najdanovic-Visak, M. Termtanun, J.W. Lim, S.S. Lam, K. Kiatkittipong, N. Laosiripojana, S. Boonyasuwat, S. Assabumrungrat, Mechanism of CaO catalyst deactivation with unconventional monitoring method for glycerol carbonate production via transesterification of glycerol with dimethyl carbonate, International Journal of Energy Research, 46 (2022) 1646-1658.
[27] Y.T. Algoufi, B.H. Hameed, Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over K-zeolite derived from coal fly ash, Fuel Processing Technology, 126 (2014) 5-11.
[28] D. Procopio, M.L. Di Gioia, An Overview of the Latest Advances in the Catalytic Synthesis of Glycerol Carbonate, in: Catalysts, 2022.
[29] P. de Caro, M. Bandres, M. Urrutigoïty, C. Cecutti, S. Thiebaud-Roux, Recent Progress in Synthesis of Glycerol Carbonate and Evaluation of Its Plasticizing Properties, Frontiers in Chemistry, 7 (2019).
[30] H. Wang, Y. Cui, J. Shi, X. Tao, G. Zhu, Porous carbon supported Lewis acid-base sites as metal-free catalysts for the carbonylation of glycerol with urea, Applied Catalysis B: Environmental, 330 (2023) 122457.
[31] J. Hu, J. Li, Y. Gu, Z. Guan, W. Mo, Y. Ni, T. Li, G. Li, Oxidative carbonylation of glycerol to glycerol carbonate catalyzed by PdCl2(phen)/KI, Applied Catalysis A: General, 386 (2010) 188-193.
[32] L.P. Ozorio, C.J.A. Mota, Direct Carbonation of Glycerol with CO2 Catalyzed by Metal Oxides, ChemPhysChem, 18 (2017) 3260-3265.
[33] M. Aresta, A. Dibenedetto, F. Nocito, C. Pastore, A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: The role of the catalyst, solvent and reaction conditions, Journal of Molecular Catalysis A: Chemical, 257 (2006) 149-153.
[34] S. Sahani, S.N. Upadhyay, Y.C. Sharma, Critical Review on Production of Glycerol Carbonate from Byproduct Glycerol through Transesterification, Industrial & Engineering Chemistry Research, 60 (2021) 67-88.
[35] J.R. Ochoa-Gómez, O. Gómez-Jiménez-Aberasturi, B. Maestro-Madurga, A. Pesquera-Rodríguez, C. Ramírez-López, L. Lorenzo-Ibarreta, J. Torrecilla-Soria, M.C. Villarán-Velasco, Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: Catalyst screening and reaction optimization, Applied Catalysis A: General, 366 (2009) 315-324.
[36] G. Pradhan, Y.C. Sharma, Green synthesis of glycerol carbonate by transesterification of bio glycerol with dimethyl carbonate over Mg/ZnO: A highly efficient heterogeneous catalyst, Fuel, 284 (2021) 118966.
[37] A. Takagaki, K. Iwatani, S. Nishimura, K. Ebitani, Synthesis of glycerol carbonate from glycerol and dialkyl carbonates using hydrotalcite as a reusable heterogeneous base catalyst, Green Chemistry, 12 (2010) 578-581.
[38] K. Hu, H. Wang, Y. Liu, C. Yang, KNO3/CaO as cost-effective heterogeneous catalyst for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate, Journal of Industrial and Engineering Chemistry, 28 (2015) 334-343.
[39] P. Inrirai, J. Keogh, A. Centeno-Pedrazo, N. Artioli, H. Manyar, Recent advances in processes and catalysts for glycerol carbonate production via direct and indirect use of CO2, Journal of CO2 Utilization, 80 (2024) 102693.
[40] Y.-Z. Chen, R. Zhang, L. Jiao, H.-L. Jiang, Metal–organic framework-derived porous materials for catalysis, Coordination Chemistry Reviews, 362 (2018) 1-23.
[41] S.-N. Zhao, X.-Z. Song, S.-Y. Song, H.-j. Zhang, Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors, Coordination Chemistry Reviews, 337 (2017) 80-96.
[42] C. Li, Q. Chai, X. Liu, L. Song, T. Peng, C. Lin, Y. Zhang, W. Qiu, S. Sun, X. Zheng, Mn/Co bimetallic MOF-derived hexagonal multilayered oxide catalysts with rich interface defects for propane total oxidation: Characterization, catalytic performance and DFT calculation, Applied Catalysis A: General, 668 (2023) 119449.
[43] D.K. Yoo, S.H. Jhung, N-formylation of amines with CO2 by using Zr-based metal-organic frameworks: Contribution of defect sites of MOFs to N-formylation, Applied Catalysis A: General, 659 (2023) 119170.
[44] C. Han, H. Zhang, C. Li, H. Huang, S. Wang, P. Wang, J. Li, The regulation of Cu-ZnO interface by Cu-Zn bimetallic metal organic framework-templated strategy for enhanced CO2 hydrogenation to methanol, Applied Catalysis A: General, 643 (2022) 118805.
[45] C.-M. Yang, M.V. Huynh, T.-Y. Liang, T.K. Le, T. Kieu Xuan Huynh, S.-Y. Lu, D.-H. Tsai, Metal-organic framework-derived Mg-Zn hybrid nanocatalyst for biodiesel production, Advanced Powder Technology, 33 (2022) 103365.
[46] O. Grad, A.M. Kasza, A. Turza, M. Dan, L. Barbu-Tudoran, M.D. Lazar, M. Mihet, Facile and efficient synthesis of ordered mesoporous MIL-53(Al)-derived Ni catalysts with improved activity in CO2 methanation, Journal of Environmental Chemical Engineering, 11 (2023) 109456.
[47] T. Chen, R. Wang, C. Sun, D. Kong, S. Lu, X. Li, Metal-organic frameworks templated micropore-enriched defective MnCeOx for low temperature chlorobenzene oxidation, Applied Catalysis A: General, 645 (2022) 118845.
[48] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration, Chemistry – A European Journal, 10 (2004) 1373-1382.
[49] D. Liu, F. Dai, Z. Tang, Y. Liu, C. Liu, The structure-directed effect of Al-based metal–organic frameworks on fabrication of alumina by thermal treatment, Materials Research Bulletin, 65 (2015) 287-292.
[50] Y.T. Algoufi, G. Kabir, B.H. Hameed, Synthesis of glycerol carbonate from biodiesel by-product glycerol over calcined dolomite, Journal of the Taiwan Institute of Chemical Engineers, 70 (2017) 179-187.
[51] Y.-S. Chen, C.-M. Yang, T.T. Nguyen Hoang, D.-H. Tsai, Porous magnesia-alumina composite nanoparticle for biodiesel production, Fuel, 285 (2021) 119203.
[52] J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, Journal of Applied Crystallography, 11 (1978) 102-113.
[53] T.J. Gardner, G.L. Messing, Magnesium salt decomposition and morphological development during evaporative decomposition of solutions, Thermochimica Acta, 78 (1984) 17-27.
[54] A. Zhao, B. Xiong, Y. Han, H. Tong, Thermal decomposition paths of calcium nitrate tetrahydrate and calcium nitrite, Thermochimica Acta, 714 (2022) 179264.
[55] C.-Y. Chang, Y.-F. Chen, Y.-T. Tsai, C.-F. Huang, Y.-T. Pan, D.-H. Tsai, Sustainable Synthesis of Epoxides from Halohydrin Cyclization by Composite Solid-Based Catalysts, Industrial & Engineering Chemistry Research, 61 (2022) 9970-9980.
[56] Y. Liu, S. Liu, Z. Yue, Mesoporous alumina nanosheets and nanorolls derived from topologically identical Al-based MOFs, RSC Advances, 5 (2015) 31742-31745.
[57] M. Manikandan, P. Sangeetha, Optimizing the Surface Properties of MgO Nanoparticles Towards the Transesterification of Glycerol to Glycerol Carbonate, ChemistrySelect, 4 (2019) 6672-6678.
[58] A. Eskemech, H. Chand, A. Karmakar, V. Krishnan, R.R. Koner, Zn-MOF as a Single Catalyst with Dual Lewis Acidic and Basic Reaction Sites for CO2 Fixation, Inorganic Chemistry, 63 (2024) 3757-3768.
[59] S. Pan, L. Zheng, R. Nie, S. Xia, P. Chen, Z. Hou, Transesterification of Glycerol with Dimethyl Carbonate to Glycerol Carbonate over Na–based Zeolites, Chinese Journal of Catalysis, 33 (2012) 1772-1777.
[60] M. Kouzu, T. Kasuno, M. Tajika, S. Yamanaka, J. Hidaka, Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol, Applied Catalysis A: General, 334 (2008) 357-365.
[61] G. Parameswaram, M. Srinivas, B. Hari Babu, P.S. Sai Prasad, N. Lingaiah, Transesterification of glycerol with dimethyl carbonate for the synthesis of glycerol carbonate over Mg/Zr/Sr mixed oxide base catalysts, Catalysis Science & Technology, 3 (2013) 3242-3249.
[62] J. Poolwong, S. Del Gobbo, V. D'Elia, Transesterification of dimethyl carbonate with glycerol by perovskite-based mixed metal oxide nanoparticles for the atom-efficient production of glycerol carbonate, Journal of Industrial and Engineering Chemistry, 104 (2021) 43-60.
[63] H. Zhao, X. Liang, Y. Gao, Organic-inorganic hybrid epoxy resin coating with high thermal stability and hydrophobicity for corrosion protection prepared by (3-aminopropyl) triethoxysilane as a bridging agent, Materials Today Communications, 39 (2024) 108950.
[64] R.B. Figueira, Hybrid Sol–gel Coatings for Corrosion Mitigation: A Critical Review, in: Polymers, 2020.
[65] X. Chen, S.F. Wen, T. Feng, X. Yuan, High solids organic-inorganic hybrid coatings based on silicone-epoxy-silica coating with improved anticorrosion performance for AA2024 protection, Progress in Organic Coatings, 139 (2020) 105374.
[66] V. Oldani, G. Sergi, C. Pirola, B. Sacchi, C.L. Bianchi, Sol-gel hybrid coatings containing silica and a perfluoropolyether derivative with high resistance and anti-fouling properties in liquid media, Journal of Fluorine Chemistry, 188 (2016) 43-49.
[67] P.M. Barkhudarov, P.B. Shah, E.B. Watkins, D.A. Doshi, C.J. Brinker, J. Majewski, Corrosion inhibition using superhydrophobic films, Corrosion Science, 50 (2008) 897-902.
[68] T.S. Hamidon, M.H. Hussin, Susceptibility of hybrid sol-gel (TEOS-APTES) doped with caffeine as potent corrosion protective coatings for mild steel in 3.5 wt.% NaCl, Progress in Organic Coatings, 140 (2020) 105478.
[69] H. Najafi-Ashtiani, A. Rahdar, Flexibility investigation of free-silicon organic–inorganic (ZrTiHfO2-PVP) hybrid films as a gate dielectric, Applied Physics A, 127 (2021) 217.
[70] M.C. Matos, L.M. Ilharco, R.M. Almeida, The evolution of TEOS to silica gel and glass by vibrational spectroscopy, Journal of Non-Crystalline Solids, 147-148 (1992) 232-237.
[71] H.-r. Wang, Z. Xiao, J.-e. Qu, H.-w. Yang, Z.-y. Cao, X.-p. Guo, A Comparison Study on Corrosion Resistance of 430 Stainless Steel Surfaces Modified by Alkylsilane and Fluoroalkylsilane SAMs, Journal of Iron and Steel Research, International, 20 (2013) 75-81.
[72] C. Larissa Brentano, Z. João Henrique, Fourier Transform Infrared and Raman Characterization of Silica-Based Materials, in: T.S. Mark (Ed.) Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences, IntechOpen, Rijeka, 2016, pp. Ch. 1.