研究生: |
石庭嘉 Shih, Tingchia |
---|---|
論文名稱: |
利用交聯方法探討雞絨毛蛋白片段HP36的結構 Studying the Unfolded Structure of Villin Headpiece Fragment HP36 by a Cross-linking Approach |
指導教授: |
洪嘉呈
Horng, Jia-Cherng |
口試委員: |
江昀緯
Chiang, Yun-Wei 李政怡 Lee, Cheng-I |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 雞絨毛蛋白 、胜肽 、交聯 、摺疊機制 、穩定度 |
外文關鍵詞: | villin, folding mechanism |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雞絨毛蛋白片段HP36是一個具有36個胺基酸的小型螺旋蛋白,主要構形由三個α-螺旋所組成,由於具有體積小、結構穩定、摺疊快速等特性,使得HP36成為蛋白質摺疊的熱門研究模型。在先前的研究結果中顯示HP36在未摺疊態 (unfolded state) 下仍然具有部分的二級結構存在,這項特點被認為是HP36能夠快速進行摺疊的關鍵。在本研究中,我們設計五個不同位置的組合 (44-48、44-49、56-59、57-60、68-72號位) 分別在HP36的三個α-螺旋上置換半胱胺酸 (cysteine),並利用間二甲苯基團 (m-xylene) 進行交聯 (cross-link) 將α-螺旋結構固定。由Far-UV CD光譜、NMR光譜及螢光光譜顯示所有胜肽都具有與原生態 (wild-type) 相似的構形;利用變性實驗測量穩定度與連動性 (cooperativity) 後,其結果指出交聯能夠使胜肽穩定度上升,置換半胱胺酸則會使胜肽穩定度下降,而藉由連動性的變化我們可以推測在未摺疊態中殘存的二級結構可能位於α1螺旋的碳端 (C-terminus) 以及α3螺旋上,α2螺旋則對結構展開 (unfold) 過程十分重要。由Discovery Studio程式在CHARMm力場下進行分子動力學 (molecular dynamics) 的模擬結果同樣顯示所有胜肽都具有與原生態相似的構形,而殘基間作用力的計算結果證明半胱胺酸的強烈疏水性是造成胜肽穩定度下降的主因。特別的是,α3螺旋 (68-72) 在進行交聯後能使胜肽整體穩定度顯著上升,此結果值得進一步研究是否與先前研究中提到的α3-α2螺旋之間的連動穩定效應有關。
The helical subdomain of villin headpiece, HP36, is one of the smallest naturally occurring cooperatively folded proteins. Because of its small size, rapid folding rate and simple three-helix topology, HP36 has been a popular model for theoretical and computational study of protein folding. Many studies have suggested that there are residual secondary structures of HP36 in the unfolded state, and considered it to be the key of fast-folding. In our study, five different combinations of double cysteine mutation were carried out on the three helices of HP36, and m-xylene was used as a cross-linker to staple the α-helix structure. Far-UV CD, NMR, and fluorescence spectra indicate that all of the mutants fold into a similar structure to that of the wild-type. By denaturation experiments, stability and cooperativity of the proteins are determined. The results show that cross-linking stabilizes the proteins, while cysteine mutation destabilizes the proteins. From the decreases of cooperativity, we conclude that α3 helix and the C-terminus of α1 helix likely maintain residual secondary structures in the unfolded state, and α2 helix may play an important role in HP36 unfolding. The final structures from MD simulation under CHARMm force field are similar to that of wild-type, and the calculated interaction energy between the residues reveals that the hydrophobicity of cysteine results in the destabilization of the proteins. Remarkably, the mutant with cross-linked α3 helix demonstrates the high stability, and the result may be related to the α3-α2 cooperative stabilizing which was reported in the literature.
1. George, S. P.; Wang, Y.; Mathew, S.; Srinivasan, K.; Khurana, S. Dimerization and actin-bundling properties of villin and its role in the assembly of epithelial cell brush borders. J. Biol. Chem. 2007, 282, 26528-26541.
2. Vardar, D.; Chishti, A. H.; Frank, B. S.; Luna, E. J.; Noegel, A. A.; Oh, S. W.; Schleicher, M.; McKnight, C. J. Villin-type headpiece domains show a wide range of F-actin-binding affinities. Cell Motil. Cytoskeleton 2002, 52, 9-21.
3. Friederich, E.; Vancompernolle, K.; Louvard, D.; Vandekerckhove, J. Villin function in the organization of the actin cytoskeleton: correlation of in vivo effects to its biochemical activities in vitro. J. Biol. Chem. 1999, 274, 26751-26760.
4. Bazari, W. L.; Matsudaira, P.; Wallek, M.; Smeal, T.; Jakes, R.; Ahmed, Y. Villin sequence and peptide map identify six homologous domains. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 4986-4990.
5. McKnight, C. J.; Doering, D. S.; Matsudaira, P. T.; Kim, P. S. A thermostable 35-residue subdomain within villin headpiece. J. Mol. Biol. 1996, 260, 126-134.
6. Xiao, S.; Bi, Y.; Shan, B.; Raleigh, D. P. Analysis of core packing in a cooperatively folded miniature protein: the ultrafast folding villin headpiece helical subdomain. Biochemistry 2009, 48, 4607-4616.
7. McKnight, C. J.; Matsudaira, P. T.; Kim, P. S. NMR structure of the 35-residue villin headpiece subdomain. Nat. Struct. Mol. Biol. 1997, 4, 180-184.
8. Žoldák, G.; Stigler, J.; Pelz, B.; Li, H.; Rief, M. Ultrafast folding kinetics and cooperativity of villin headpiece in single-molecule force spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 18156-18161.
9. Chung, J. K.; Thielges, M. C.; Fayer, M. D. Dynamics of the folded and unfolded villin headpiece (HP35) measured with ultrafast 2D IR vibrational echo spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 3578-3583.
10. Harada, R.; Kitao, A. The fast-folding mechanism of villin headpiece subdomain studied by multiscale distributed computing. J. Chem. Theory Comput. 2012, 8, 290-299.
11. Brewer, S. H.; Vu, D. M.; Tang, Y.; Li, Y.; Franzen, S.; Raleigh, D. P.; Dyer, R. B. Effect of modulating unfolded state structure on the folding kinetics of the villin headpiece subdomain. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 16662-16667.
12. Tang, Y.; Rigotti, D. J.; Fairman, R.; Raleigh, D. P. Peptide models provide evidence for significant structure in the denatured state of a rapidly folding protein: the villin headpiece subdomain. Biochemistry 2004, 43, 3264-3272.
13. Tang, Y.; Goger, M. J.; Raleigh, D. P. NMR characterization of a peptide model provides evidence for significant structure in the unfolded state of the villin headpiece helical subdomain. Biochemistry 2006, 45, 6940-6946.
14. Meng, W.; Shan, B.; Tang, Y.; Raleigh, D. P. Native like structure in the unfolded state of the villin headpiece helical subdomain, an ultrafast folding protein. Protein Sci. 2009, 18, 1692-1701.
15. Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. How fast-folding proteins fold. Science 2011, 334, 517-520.
16. Lv, C.; Tan, C.; Qin, M.; Zou, D.; Cao, Y.; Wang, W. Low folding cooperativity of Hp35 revealed by single-molecule force spectroscopy and molecular dynamics simulation. Biophys. J. 2012, 102, 1944-1951.
17. Hocking, H. G.; Häse, F.; Madl, T.; Zacharias, M.; Rief, M.; Žoldák, G. A compact native 24-residue supersecondary structure derived from the villin headpiece subdomain. Biophys. J. 2015, 108, 678-686.
18. Yu, Z.-Q.; Xu, X.-M.; Hong, C.-Y.; Wu, D.-C.; You, Y.-Z. A responsive hyperbranched polymer not only can self-immolate but also can self-cross-link. Macromolecules 2014, 47, 4136-4143.
19. Liu, F.; Goshe, M. B. Combinatorial electrostatic collision-induced dissociative chemical cross-linking reagents for probing protein surface topology. Anal. Chem. 2010, 82, 6215-6223.
20. Churchill, C. D. M.; Eriksson, L. A.; Wetmore, S. D. Formation mechanism and structure of a guanine–uracil DNA intrastrand cross-link. Chem. Res. Toxicol. 2011, 24, 2189-2199.
21. Kennedy-Darling, J.; Smith, L. M. Measuring the formaldehyde protein–DNA cross-link reversal rate. Anal. Chem. 2014, 86, 5678-5681.
22. Jo, H.; Meinhardt, N.; Wu, Y.; Kulkarni, S.; Hu, X.; Low, K. E.; Davies, P. L.; DeGrado, W. F.; Greenbaum, D. C. Development of α-helical calpain probes by mimicking a natural protein–protein interaction. J. Am. Chem. Soc. 2012, 134, 17704-17713.
23. Markiewicz, B. N.; Jo, H.; Culik, R. M.; DeGrado, W. F.; Gai, F. Assessment of local friction in protein folding dynamics using a helix cross-linker. J. Phys. Chem. B 2013, 117, 14688-14696.
24. Merrifield, B. Solid phase synthesis. Science 1986, 232, 341-347.
25. Sigma-Aldrich Co. Basic steps in solid peptide synthesis using Fmoc-chemistry. http://www.sigmaaldrich.com/life-science/custom-oligos/custom-peptides/learning-center/solid-phase-synthesis.html (accessed August 12, 2016).
26. Chan, W. C.; White, P. D. Fmoc solid phase peptide synthesis: a practical approach. Oxford University Press, 2000.
27. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of instrumental analysis. Cengage Learning, 2007.
28. Berova, N.; Nakanishi, K.; Woody, R. W. Circular dichroism: principles and applications. Wiley-VCH, 2000.
29. Fasman, G. D. Circular dichroism and the conformational analysis of biomolecules. Springer US, 1996.
30. Lewars, E. G. Computational chemistry: introduction to the theory and applications of molecular and quantum mechanics. Springer Netherlands, 2011.
31. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179-5197.
32. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983, 4, 187-217.
33. Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. GROMACS: fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701-1718.
34. Nozaki, Y. The preparation of guanidine hydrochloride. Methods Enzymol. 1972, 26, 43-50.
35. Whitmore, L.; Wallace, B. A. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 2008, 89, 392-400.
36. Whitmore, L.; Wallace, B. A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 2004, 32, W668-W673.
37. Wishart, D. S.; Sykes, B. D.; Richards, F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 1992, 31, 1647-1651.
38. Glasscock, J. M.; Zhu, Y.; Chowdhury, P.; Tang, J.; Gai, F. Using an amino acid fluorescence resonance energy transfer pair to probe protein unfolding: application to the villin headpiece subdomain and the LysM domain. Biochemistry 2008, 47, 11070-11076.
39. Doering, D. S.; Matsudaira, P. Cysteine scanning mutagenesis at 40 of 76 positions in villin headpiece maps the F-actin binding site and structural features of the domain. Biochemistry 1996, 35, 12677-12685.
40. Bachem Peptide calculator. http://www.bachem.com/service-support/peptide-calculator (accessed August 23, 2016).
41. Manavalan, P.; Ponnuswamy, P. K. Hydrophobic character of amino acid residues in globular proteins. Nature 1978, 275, 673-674.
42. Nozaki, Y.; Tanford, C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions: establishment of a hydrophobicity scale. J. Biol. Chem. 1971, 246, 2211-2217.
43. Miller, S.; Janin, J.; Lesk, A. M.; Chothia, C. Interior and surface of monomeric proteins. J. Mol. Biol. 1987, 196, 641-656.
44. Fraczkiewicz, R.; Braun, W. Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J. Comput. Chem. 1998, 19, 319-333.