研究生: |
楊承山 Yang, Chan-Shan |
---|---|
論文名稱: |
氧化銦錫奈米材料在兆赫波段光電特性之量測及其應用 Characterization and Applications of Indium-Tin-Oxide Nanomaterials in the Terahertz Frequency Band |
指導教授: |
潘犀靈
Pan, Ci-Ling |
口試委員: |
潘犀靈
Ci-Ling Pan 齊正中 Cheng-Chung Chi 施宙聰 Jow-Tsong Shy 嚴大任 Ta-Jen Yen 張存續 Tsun-Hsu Chang 趙如蘋 Ru-Pin Pan 余沛慈 Peichen Yu 謝嘉民 Jia-Min Shieh 張顏暉 Yuan-Huei Chang |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 145 |
中文關鍵詞: | 兆赫波 、奈米材料 、光譜儀 、液晶 、相位延遲器 、氧化銦錫 |
外文關鍵詞: | Terahertz, Nanomaterials, Spectroscopy, Liquid crystal, Phase shifter, Indium-tin-oxide |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們分別利用穿透式以及反射式兆赫波時域光譜技術來研究氧化銦錫奈米晶鬚和其濺鍍薄膜這兩種重要材料結構的遠紅外光學特性和電性,並分析其在非Drude電學模型 (Drude-Smith模型) 下所存在的反向散射與局限效應。氧化銦錫奈米晶鬚之複數導電率在兆赫波段的非Drude電學行為可以歸咎為載子在晶界間與雜質離子間之散射。然而,在氧化銦錫薄膜中,因為缺少明顯的晶界,主要只有雜質離子所造成的載子散射。考慮相同高度的氧化銦錫奈米晶鬚和其薄膜,前者具有較高的電子遷移率 (~125 cm2V-1s-1),比薄膜的 (~27 cm2V-1s-1)高出許多。這個現象是由於奈米晶鬚擁有較長的載子散射時間。另外,雖然氧化銦錫奈米晶鬚之直流導電率 (~250 -1cm-1)和兆赫波段之實部導電率都低於氧化銦錫薄膜的 (~800 -1cm-1),但其導電能力,已經足以用來當作電極。較突出的導電率,也間接反映出氧化銦錫薄膜具備較高的電漿頻率。更重要的是,由於兆赫輻射可以輕易地通過氧化銦錫奈米晶鬚中空氣所填滿的區域,故其在兆赫波段之穿透率 ( 60~70 %)優於薄膜13倍以上。
此外,為了獲得材料更高頻的光電學資訊,並比較不同氧化銦錫奈米結構 (奈米柱和奈米晶鬚),我們整合了雷射光激發電漿與光導天線兆赫波時域光譜儀來得到0.15~9.00兆赫波段的頻譜資訊。也因此,我們可以很準確地獲得0.20~4.00兆赫之間奈米材料之光學與電學之資訊。同時,利用傅里葉轉換紅外光譜,我們發現在整個遠紅外波段中(0.2~15.0 兆赫),奈米結構可以維持70 %以上的穿透率,而傳統濺鍍薄膜只能維持在9 %左右。氧化銦錫奈米柱,奈米晶鬚與濺鍍薄膜之寬頻複數導電率皆可以被Drude-Smith模型所擬合。考慮一樣的氧化銦錫組成體積比,由於奈米晶鬚之載子侷限行為較輕微,故無論是電子遷移率或直流導電率皆優於奈米柱。另一方面,濺鍍薄膜由於具有較高之載子與雜質離子濃度,故造成嚴重的散射行為,進而使電子遷移率較奈米柱和奈米晶鬚皆來的低。在此寬頻兆赫波段的研究中,我們也考慮複數導電率在兆赫頻率範圍之極值與曲折點,這些資訊提供了額外的標準來評斷利用兆赫波時析光譜儀來獲得非Drude模型的材料之電學特性準確度。目前的研究結果顯示高度在 ~1000 奈米左右的奈米晶鬚具有最優異的穿透率和電學特性,因此最有潛力當作在兆赫波段之高透明電極材料。
利用前面所研究之氧化銦錫奈米晶鬚,我們設計了兩種同時具備高兆赫波穿透率與低操作電壓之新型電控液晶兆赫波相位延遲器。首先,利用奈米晶鬚取代傳統濺鍍薄膜當作一高穿透率之電極材料。更進一步地,我們首創使用氧化銦錫奈米晶鬚當作液晶配向之媒介。此兩種液晶層厚度約513微米之兆赫波相位延遲器同時展現高兆赫波穿透率 (~77%),此外,皆可在低操作電壓(分別為17.68 and 2.83 V (rms))成為1/4波長相位延遲元件(操作頻率為1.0兆赫)。同時具備當作透明電極與液晶配向能力的特性,使得氧化銦錫奈米晶鬚除了在可見光波段的廣泛應用外,也成為兆赫波段元件之不可或缺的材料。
In this thesis, we firstly studied the non-Drude behavior of indium-tin-oxide (ITO) nanowhiskers (NWhs) and thin film by using the transmission-type THz-TDS (THz-TDTS) and reflection-type THz-TDRS (THz-TDRS). Their electrical properties, such as plasma frequencies, carrier scattering times, were found to be fitted well by the Drude-Smith model over 0.1~1.4 THz. The non-Drude behavior of complex conductivities in ITO NWhs can be attributed to carrier scattering from grain boundaries and impurity ions. On the other hand, in ITO thin films, non-Drude behavior observed is ascribed to scattering by impurity ions only. Under the condition of the same height, the mobility of NWhs (~125 cm2V-1s-1) is much larger than that of the ITO thin films (~27 cm2V-1s-1), which is due to the longer carrier scattering time of the NWhs. The DC conductivities (~250 -1cm-1) or real conductivities in the THz frequency region of ITO NWhs is, however, lower than those of the ITO thin films (~800 -1cm-1) but adequate for use as electrodes. Significantly, the transmittance of ITO NWhs ( 60~70 %) is much higher ( 13 times) than that of ITO thin films in the THz frequency range. The underneath basic physics is that the THz radiation can easily propagate through the air-space among NWhs.
In order to realize the THz information in higher frequencies, two different types of THz -TDSbased on the photoconductive antenna, and laser-induced gaseous plasma, respectively, with combined spectral coverage from 0.15 to 9.00 THz were applied. These catalyze accurate determination of the optical and electrical properties of such ITO nanomaterials in the frequency range from 0.20 to 4.00 THz. When the volume filling factors of both type of nanomaterials, NWhs, and nanorods (NRs), are nearly same, mobilities and DC conductivities of ITO NWhs are higher than those of NRs due to less severe carrier localization effects on the NWhs. On the other hand, mobilities of sputtered ITO thin films are lower than ITO nanomaterials because of larger concentration of dopant ions in films, which causes stronger carrier scattering. To date, our study indicates that ITO NWhs at the height of ~1000 nm exhibit superb transmittance and adequate electrical characteristics for the applications of transparent conducting electrodes of THz Devices.
Utilizing THz characteristics of ITO NWhs as transparent electrodes, we have also demonstrated two novel schemes of high-transmittance low-operative-voltage THz phase shifters by electrically tuning liquid crystals (LCs) cell. In place of traditional ITO thin film, NWhs with graded-refractive-index (GRIN) in the THz region act as transparent electrodes. Meanwhile, a new method of LCs alignment by using ITO NWhs is also presented. For two schemes with THz transmittance ~77%, phase shift of more than /2 at 1.0 THz is achieved in a ~513 m-thick cell with pretty low driving voltages, 17.68 and 2.83 V (rms), respectively. The ITO NWhs obliquely evaporated by electron-beam glancing-angle deposition can serve simultaneously as transparent electrodes and alignment layer for LC devices in the THz frequency range.
[1] X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics, New York: Springer, 2010.
[2] Y.-S. Lee, Principles of Terahertz Science and Technology, New York: Springer, 2009.
[3] D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett., vol. 45, 284-286 (1984).
[4] C.-K. Lee, C.-S. Yang, S.-H. Lin, S.-H. Huang, O. Wada, and C.-L. Pan, “Effects of two-photon absorption on terahertz radiation generated by femtosecond-laser excited photoconductive antennas,” Opt. Express, vol. 19, no. 24, pp. 23689-23697 (2011).
[5] C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, O. Wada, and C.-L. Pan, “Non-Drude behavior in indium-tin-oxide nanowhiskers and thin films by transmission and reflection THz time-domain spectroscopy,” IEEE J. Quantum Electron., in accepted pending minor revisions.
[6] G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature, vol. 420, pp. 153-156 (2002).
[7] K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10J ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett., vol. 90, 171121 (2007).
[8] M. D. Thomson, M. Kre, T. Löffler, and H. G. Roskos, “Broadband THz emission from gas plasma induced by femtosecond optical pulses: from fundamental to applications,” Laser & Photon. Rev., vol. 1, no. 4, pp. 349-368 (2007).
[9] C.-S. Yang, C.-M. Chang, P.-H. Chen, P. Yu, and C.-L. Pan, “Broadband terahertz conductivity and optical transmission of indium-tin-oxide (ITO) nanomaterials,” Opt. Express, in submitted.
[10] J. Dai, J. Liu, and X.-C. Zhang, “Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 1, pp. 183-187 (2011).
[11] M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol., vol. 20, pp. S151-S163 (2005).
[12] S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys., vol. 109, 061301 (2011).
[13] M. Cronin-Golomb, “Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production,” Opt. Lett., vol. 29, no. 17, pp. 2046-2048 (2004).
[14] H. Hamster, A. Sullivan, S. Gordon, W. White, and R. W. Falcone, “Subpicosecond, electromagnetic,” Phys. Rev. Lett., vol. 71, no. 17, pp. 2725-2728 (1993).
[15] T. Löffler, F. Jacob, and H. G. Roskos, “Generation of terahertz pulses by photoionization of electrically biased air,” Appl. Phys. Lett., vol. 77, 453 (2000).
[16] T. Löffler and H. G. Roskos, “Gas-pressure dependence of terahertz-pulse generation in a laser-generated nitrogen plasma,,” J. Appl. Phys., vol. 91, 2611 (2002).
[17] D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett., vol. 25, no. 16, pp. 1210-1212 (2000).
[18] K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express, vol. 15, no. 8, pp. 4577-4584 (2007).
[19] M. Kre, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy,” Nat. Phys., vol. 2, 327 (2006).
[20] G. Gallot, and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B, vol. 16, no. 8, pp. 1204-1212 (1999).
[21] F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett., vol. 91, 081109 (2007).
[22] J. Dai, X. Xie, and X.-C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. Lett., vol. 97, 103903 (2006).
[23] M. v. Exter, Ch. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett., vol. 14, no. 20, pp. 1128-1130 (1989).
[24] C. Lin, I. Ho, and X. C. Zhang, “Study of broadband THz time-domain spectroscopy at different relative humidity levels,” Chin. Opt. Lett., vol. 10, no. 4, 043001 (2012)
[25] J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically,” Nat. Photon., vol. 4, pp. 627-631 (2010).
[26] A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, “THz time domain spectroscopy of biomolecular conformational modes,” Phys. Med. Biol., vol. 47, pp. 3797-3805 (2002).
[27] M. Walther, B. Fischer, M. Schall, H. Helm, and P. U. Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis, and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett., vol. 332, pp. 389-395 (2000).
[28] H.-B. Liu, Y. Chen, G. J. Bastiaans, and X.-C. Zhang, “Detecction and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Express, vol. 14, no. 1, pp. 415-423 (2006).
[29] J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys., vol. 107, 111101 (2010).
[30] H. Cai, D. Wang, and J. Shen, “Study of atmospheric pollution using terahertz wave,” Proc. SPIE, Infrared, Milli. Wave, and Terahz. Tech., vol. 7854, Beijing, China (2010).
[31] M. Guinet, L. Croizé, A. Cuisset, F. Hindle, R. Bocquet, and G. Mouret, “Pollutants monitoring in the sub-THz frequency domain,” Infrared, Milli., and Terahz. Waves (IRMMW-THz), 2012 37th International Conference on, Wollongong, NSW (2012).
[32] C. Kulesa, “Terahertz spectroscopy for astronomy: from comets to cosmology,” IEEE Trans. Terahz Sci. Tech., vol. 1, no. 1, pp. 232-240 (2011).
[33] P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys., vol. 89, no. 4, pp. 2357-2359 (2001).
[34] C.-S. Yang, C.-J. Lin, R.-P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C.-L. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B, vol. 27, no. 9, pp. 1866-1873 (2010).
[35] S. H. Brewer, and S. Franzen, “Indium Tin Oxide Plasma Frequency Dependence on Sheet Resistance and Surface Adlayers Determined by Reflectance FTIR Spectroscopy,” J. Phys. Chem. B, vol. 106, no. 50, pp. 12986-12992 (2002).
[36] C.-W. Chen, Y.-C. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, and C.-L. Pan, “Frequency-dependent complex conductivities and electric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron., vol. 46, no. 12, pp. 1746-1754 (2010).
[37] G. J. Exarhos, and X.-D. Zhou, “Discovery-based design of transparent conducting oxide films,” Thin Solid Films, vol. 515, pp. 7025-7052 (2007).
[38] H. Li, N. Wang, and X. Liu, “Optical and electrical properties of Vanadium doped Indium oxide thin films,” Opt. Express, vol. 16, no. 1, pp. 194-199 (2008).
[39] Y.-J. Liu, C.-C. Huang, T.-Y. Chen, C.-S. Hsu, J.-K. Liou, T.-Y. Tsai, and W.-C. Liu, “Implementation of an indium-tin-oxide (ITO) direct-Ohmic contact structure on a GaN-based light emitting diode,” Opt. Express, vol. 19, no. 15, pp. 14662-14670 (2011).
[40] Y.-J. Liu, C.-C. Huang, T.-Y. Chen, C.-S. Hsu, J.-K. Liou, T.-Y. Tsai, and W.-C. Liu, “On a GaN-based light-emitting diode with an indium-tin-oxide (ITO) direct –ohmic contact structure,” IEEE Photonics Techno. Lett., vol. 23, no. 15, pp. 1037-1049 (2011).
[41] J. W. Leem, and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/µc-Si:H tandem thin film solar cells,” Opt. Express, vol. 19, no. S3, pp. A258-A268 (2011).
[42] S. H. Lee, and N. Y. Ha, “Nanostructures indium-tin-oxide films fabricated by all-solution processing for functional transparent electrodes,” Opt. Express, vol. 19, no. 22, pp. 21803-21808 (2011).
[43] W.-Y. Chang, H.-J. Lin, and J.-S. Chang, “Optical panel with full multitouch using patterned indium tin oxide,” Opt. Lett., vol. 36, no. 6, pp. 894-896 (2011).
[44] Ö. Senlik, H. Y. Cheong, and T. Yoshie, “Design of subwavelength-size, indium tin oxide (ITO)-clad optical disk cavities with quality-factors exceeding 104,” Opt. Express, vol. 19, no. 23, pp. 23469-23474 (2011).
[45] C. K. Choi, K. D. Kihm, and A. E. English, “Optoelectric biosensor using indium-tin-oxide electrodes,” Opt. Lett., vol. 32, no. 11, pp. 1405-1407 (2007).
[46] E. Mortazy, S. Vigne, S. Nazarpour, and M. Chaker, “Highly transparent and conductive nanometric indium tin oxide for pulse shaping applications,” presented at the 2011 ICO International Conference on Information Photonics, Ottawa, ON, Canada, May 18-20, 2011, pp. 1-2.
[47] S. Lopez, C. R. Zamarreňo, M. Hernaez, I. Del Villar, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on sputtered indium tin oxide coatings,” presented at the 2011 Fifth International Conference on Sensing Technology, Palmerston North, New Zealand, Nov. 28-Dec. 1, 2011, pp. 585-588.
[48] D. Mergel, and Z. Qiao, “Correlation of lattice distortion with optical and electrical properties of In2O3 : Sn films,” J. Appl. Phys., vol. 95, no. 10, pp. 5608-5615 (2004).
[49] J.-S. Cho, S.-K. Koh, and K. H. Yoon, “Microstructure and electrical properties of indium oxide thin films prepared by direct oxygen ion-assisted deposition,” J. Electrochem. Soc., vol. 147, no.3, pp.1065-1070 (2000).
[50] H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices,” J. Appl. Phys., vol. 86, no. 11, pp. 6451-6461 (1999).
[51] M. M. Hamasha, K. Alzoubi, and S. Lu, “Behavior of sputtered indium-tin-oxide thin film on poly-ethylene terephthalate substrate under stretching,” J. Display Technol., vol. 7, no. 8, pp. 426-433 (2011).
[52] P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater., vol. 21, 1618-1621 (2009).
[53] P. Yu, C.-H. Chang, M.-S. Su, M.-H. Hsu, K.-H. Wei, “Embedded indium-tin-oxide nanoelectrodes for efficiency and lifetime enhancement of polymer-based solar cells,” Appl. Phys. Lett., vol. 96, 153307 (2010).
[54] J. W. Leem, and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/c-Si:H tandem thin film solar cells,” Opt. Express, vol. 19, no. S3, A258-A268 (2011).
[55] C.-H. Chang, M.-H. Hsu, P.-C. Tseng, P. Yu, W.-L. Chang, W.-C. Sun, and W.-C.Hsu, “Enhanced angular characteristics of indium tin oxide nanowhisker-coated silicon solar cells,” Opt. Express, vol. 19, no. S3, A219-A224 (2011)
[56] D.-J. Seo, J.-P. Shim, S.-B. Choi, T. H. Seo, E.-K. Suh, and D.-S. Lee, “Efficiency improvement in InGaN-based solar cell s by indium tin oxide nano dots covered with ITO films,” Opt. Express, vol. 20, no. S6, A991-A996 (2012).
[57] J. W. Leem, and J. S. Yu, “Indium tin oxide subwavelength nanostructures with surface antireflection and superhydrophilicity for high-efficiency Si-based thin film solar cells,” Opt. Express, vol. 20, no. S3, A431-A440 (2012).
[58] C.-H. Chang, P. Yu, M.-H. Hsu, P.-C. Tseng, W.-L. Chang, W.-C. Sun, W.-C. Hsu, S.-H. Hsu, and Y.-C. Chang, “Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics,” Nanotechnology, vol. 22, 095201 (2011).
[59] C. H. Chiu, P. Yu, C. H. Chang, C. S. Yang, M. H. Hsu, H. C. Kuo, and M. A. Tsai, “Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes,” Opt. Express, vol. 17, no. 23, 21250-21256 (2009).
[60] T. H. Seo, K. J. Lee, A. H. Park, C.-H. Hong, E.-K. Suh, S. J. Chae, Y. H. Lee, T. V. Cuong, V. H. Pham, J. S. Chung, E. J. Kim, and S.-R. Jeon, “Enhanced light output power of near UV light emitting diodes with graphene/indium tin oxide nanodots nodes for transparent and current spreading electrode,” Opt. Express, vol. 19, no. 23, 23111-23117 (2011).
[61] Y. Y. Kee, S. S. Tan, T. K. Yong, C. H. Nee, S. S. Yap, T. Y. Tou, G. Sáfrán, Z. E. Horváth, J. P. Moscatello, and Y. K. Yap, “Low-temperature synthesis of indium tin oxide nanowires as the transparent electrodes for organic light emitting devices,” Nanotechnology, vol. 23, 025706 (2012).
[62] S. H. Lee, and N. Y. Ha, “Nanostructured indium-tin-oxide films fabricated by all-solution processing for functional transparent electrodes,” Opt. Express, vol. 19, no. 22, 21803-21808 (2011).
[63] S.-P. Chiu, H.-F. Chung, Y.-H. Lin, J.-J. Kai, F.-R. Chen, and J.-J. Lin, “Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K,” Nanotechnology, vol. 20, 105203 (2009).
[64] C. H. Chang, P. Yu, and C. S. Yang, “Broadband and omnidirectional antireflection from conductive indium-tin-oxide nanocolumns prepared by glancing-angle deposition with nitrogen,” Appl. Phys. Lett., vol. 94, 051114 (2009).
[65] A. L. Patterson, “The Scherrer formula for X-Ray particle size determination,” Phys. Rev., vol. 56, 978-982 (1939).
[66] S.-T. Wu and D.-K. Yang, Fundamentals of Liquid Crystal Devices, Wiley Series in Display Technology, 2006.
[67] B. Bahadur, Liquid Crystals-Applications and Uses, World Scientific, 1992.
[68] J. Li, Student, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Display Technol., vol. 1, pp. 51-61 (2005).
[69] J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys., vol. 97, 073501 (2005).
[70] S.-T. Wu, “Birefringence dispersions of liquid crystal,” Phys. Rev. A, vol. 33, no. 2, 1270-1274 (1986).
[71] S. Brugioni and R. Meucci, “Liquid crystals in the mid-infrared region and their applications,” Infrared Physics & Technology, vol. 46, 17-21 (2004).
[72] C.-L. Pan, C.-P. Ku, J.-C. Shih, C.-S. Yang, C.-J. Lin, and R.-P. Pan, “THz optical constants of the liquid crystal MDA-00-3461,” 23rd International Liquid Crystal Conference (ILCC), Krakow, Poland, Paper P-2. 179 (2010)
[73] C.-P. Ku, C.-C. Shih, C.-J. Lin, R.-P. Pan, and C.-L. Pan, “THz optical constants of the liquid crystal MDA-00-3461,” Mol. Cryst. Liq. Cryst., vol. 541, pp. 303-308 (2011)
[74] Merck, Technical data sheet of MDA-00-3461, (2009)
[75] C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett., vol. 31, no. 8, pp. 1112-1114 (2006)
[76] J. E. Stockley, D. Subacius, and S. A. Serati, “The influence of the inter-pixel region in liquid crystal diffraction grating,” Liquid Crystal Displays II, SPIE v.3635, paper 18 (1999)
[77] Q. Wan, Z. T. Song, S. L. Feng, and T. H. Wang, “Single-crystalline tin-ddoped indium oxide whiskers: Synthesis and characterization,” Appl. Phys. Lett., vol. 85, no. 20, pp. 4759-4761 (2004).
[78] A. L. Beaudry, R. T. Tucker, J. M. LaForge, M. T. Taschuk, and M. J. Brett, “Indium tin oxide NWhs morphology control by vapour-liquid-solid glancing angle deposition,” Nanotechnology, vol. 23, 105608 (2012).
[79] D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B, vol. 73, 193311 (2006).
[80] J. Kröll, J. Darmo, and K. Unterrainer, “Metallic wave-impedance matching layers for broadband terahertz optical systems,” Opt. Express, vol.15, no. 11, pp. 6552-6560 (2007).
[81] D. G. Cooke, and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express, vol. 16, no. 19, pp. 15123-15129, (2008).
[82] K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation Characteristics of Terahertz Electrical Signals on Micro-Strip Lines Made of Optically Transparent Conductors,” Jpn. J. Appl. Phys., vol. 44, no. 32, pp. L1011-L1014, (2005).
[83] T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, U. C. Pernisz, and H. G. Roskos, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys., vol. 92, no. 4, pp. 2210-2212, (2002).
[84] C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 liquid crystal terahertz phase shifter,” Opt. Express, vol. 12, pp. 2630-2635 (2004).
[85] H.-Y. Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, “Electrically tunable room-temperature 2 liquid crystal terahertz phase shifter,” IEEE Photonic Technol. Lett., vol. 18, pp. 1488-1490 (2006).
[86] X.-W. Lin, J.-B. Wu, W. Hu, Z.-G. Zheng, Z.-J. Wu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Advances, vol. 1, 032133 (2011).
[87] C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express, vol. 16, pp. 2995-3001 (2008).
[88] H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics, vol. 3, pp. 148-151 (2009).
[89] C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, ”Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett., vol. 33, no. 11, pp. 1174-1176 (2008).
[90] L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett., vol. 9, no. 7, pp. 2610-2613 (2009).
[91] C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett., vol. 88, 101107 (2006).
[92] I.-C. Ho, C.-L. Pan, C.-F. Hsieh, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Solc filter,” Opt. Lett., vol. 33, no. 13, pp. 1401-1403 (2008).
[93] Y.-J. Chiang, C.-S. Yang, Y.-H. Yang, C.-L. Pan, and T.-J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett., vol. 99, 191909 (2011).
[94] N. Vieweg, N. Born, I. Al-Naib, M. Koch, “Electrically tunable terahertz notch filter,” J. Infrared Milli. Terahz Waves, vol. 33, pp. 327-332 (2012).
[95] I-Chen Ho, X. Guo, and X.-C. Zhang, “Design and performance of relative terahertz air-based-coherent-detection for time-domain spectroscopy,” Opt. Express, vol. 18, no. 3, pp. 2872-2883 (2010).
[96] B. Clough, J. Liu, and X.-C. Zhang, “”All air-plasma” terahertz spectroscopy,” Opt. Lett., vol. 36, no. 13, pp. 2399-2401 (2011).
[97] D. Cooke, L. Titova, T. L. Cocker, F. C. Krebs, A. Meldrum, F. Hegmann, and P. U. Jepsen, “Transient reflective ultra-broadband THz spectroscopy,” Advanced Photonics, OSA Technical Digest (CD), Toronto, Canada, paper STuA2 (2011)
[98] M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett., vol. 100, 031901 (2012)
[99] N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express, vol. 20, no. 27, pp. 28249-28256 (2012).
[100] X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett., vol. 96, 075005 (2006)
[101] K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photon., vol. 2, pp. 605-609 (2008)
[102] K.-Y. Kim, “Generation of coherent terahertz radiation in ultrafast laser-gas interactions,” Phys. of Plasmas, vol. 16, 056706 (2009)
[103] K.-Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “High-power broadband terahertz generation via two-color photoionization in gases,” IEEE J. Quantum Electron., vol. 48, no. 6, pp. 797-805 (2012)
[104] M. Li, W. Li, Y. Shi, P. Lu, H. Pan, and H. Zeng, “Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses,” Appl. Phys. Lett., vol. 101, 161104 (2012)
[105] C.-S. Yang, C.-H. Chang, M.-H. Lin, P. Yu, O. Wada, and C.-L. Pan, “THz conductivities of indium-tin-oxide nanowhiskers as graded-refractive-index structure,” Opt. Express, vol. 20, no. S4, pp. A441-A451 (2012).
[106] C.-L. Pan, C.-F. Hsieh, R.-P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express, vol. 13, no. 11, pp. 3921-3930 (2005).
[107] S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, “Ultrafast dynamics of nonlinear absorption in low-temperature-grown GaAs,” Appl. Phys. Lett., vol. 68, pp. 2544-2546 (1996).
[108] H. S. Loka, S. D. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices,” IEEE J. Quantum Electon., vol. 34, pp. 1426-1437 (1998).
[109] H. S. Loka, S. D. Benjamin, and P. W. E. Smith, “Refractive index and absorption changes in low-temperature-grown GaAs,” Opt. Commun., vol. 155, pp. 206-212 (1998).
[110] P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B, vol. 13, pp. 2424-2436 (1996).
[111] Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys., vol. 39, pp. 96-100 (2000).
[112] L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas,” IEEE J. Sel. Top. Quant. Electron., vol. 7, pp. 615-623 (2001).
[113] M.-H. Lin, “Terahertz reflection spectroscopic studies of the optical and electrical properties of indium-tin-oxide thin films and NWhs,” M.S. thesis, Dept. Phys., National Tsing Hua Univ., Hsinchu, Taiwan, 2011.
[114] X. Zou, J. Luo, D. Lee, C. Cheng, D. Springer, S. K. Nair, S. A. Cheong, H. J. Fan, and E. E. M. Chia, “Temperature-dependent terahertz conductivity of tin oxide nanowire films,” J. Phys. D: Appl. Phys., vol. 45, 465101 (2012).
[115] J. b. Baxter, and C. A. Schmuttenmaer, “Conductivity of ZnO Nanowires, Nanoparticles, and Thin Films Using Time-Resolved Terahertz Spectroscopy,” J. Phys. Chem. B, vol. 110, no 50, pp. 25229-25239 (2006).
[116] J. Han, Z. Zhu, S. Ray, A. K. Azad, W. Zhang, M. He, S. Li, and Y. Zhao, “Optical and dielectric properties of ZnO tetrapod structures at terahertz frequencies,” Appl. Phys. Lett., vol. 89, 031107 (2006).
[117] J. Han, W. Zhang, W. Chen, S. Ray, J. Zhang, M. He, A. K. Azad, and Z. Zhu, “Terahertz dielectric properties and low-frequency phonon resonances of ZnO nanostructures,” J. Phys. Chem. C, vol. 111, no. 35, pp. 13000-13006 (2007).
[118] N. V. Smith, “Classical generalization of the Drude formula for the optical conductivity,” Phys. Rev. B, vol. 64, 155106 (2001).
[119] T. L. Cocker, L. V. Titova, S. Fourmaux, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “Terahertz conductivity of the metal-insulator transition in a nanogranular VO2 film,” Appl. Phys. Lett., vol. 97, 221905 (2010).
[120] H. Němec, P. Kužel, and V. Sundstrӧm, “Far-infrared response of free charge carriers localized in semiconductor nanoparticles,” Phys. Rev. B, vol. 79, 115309 (2009).
[121] H. Němec, P. Kužel, and V. Sundstrӧm, “Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy,” J. Photoch. Photobio. A, vol. 215, pp. 123-139 (2010).
[122] L. V. Titova, T. L. Cocker, D. G. Cooke, X. Wang, A. Meldrum, and F. A. Hegmann, “Ultrafast percolative transport dynamics in silicon nanocrystal films,” Phys. Rev. B, vol. 83, 085403 (2011).
[123] E. Conwell, and V. F. Weisskopf, “Theory of impurity scattering in semiconductor,” Phys. Rev., 77, no. 3, pp. 388-390 (1950).
[124] J. Ederth, “Electrical transport in nanoparticle thin films of gold and indium tin oxide,” Ph.D. dissertation, Dept. Mat. Science, Uppsala Univ., Uppsala, Sweden, 2003.
[125] J. Gao, R. Chen, D. H. Lin, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires,” Nanotechnology, vol. 22, 195706 (2011).
[126] J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-Extraction Enhancement of GaInN Light-Emitting Diodes by Graded-Refractive-Index Indium Tin Oxide Anti-Reflection Contact,” Adv. Mater., vol. 20, pp. 801-804 (2008).
[127] M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B, vol. 76, pp. 125408 (2007).
[128] X. H. Zhang, H. C. Guo, A. M. Yong, J. D. Ye, S. T. Tan, and X. W. Sun, “Terahertz dielectric response and optical conductivity of n-type single-crystal ZnO epilayers grown by metal organic chemical vapor deposition,” J. Appl. Phys., vol. 107, 033101 (2010).
[129] C.-W. Chen, T.-T. Tang, S.-H. Lin, J. Y. Huang, C.-S. Chang, P.-K. Chung, S.-T. Yen, and C.-L. Pan, “Optical properties and potential applications of ε-GaSe at terahertz frequencies,” J. Opt. Soc. Am. B, vol. 26, no.9, pp. A58-A65 (2009).
[130] M. C. Beard, G. M. Turner, J. E. Murphy, O. I. Micic, M. C. Hanna, A. J. Nozik, and C. A. Schmuttenmaer, “Electronic coupling in InP nanoparticle arrays,” Nano Lett., vol. 3, no. 12, pp. 1695-1699 (2003).
[131] G. M. Turner, M. C. Beard, and C. A. Schmuttenmaer, “Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide,” J. Phys. Chem. B, vol. 106, pp. 11716-11719 (2002).
[132] H. Ahn, Y.-P. Ku, Y.-C. Wang, and C.-H. Chuang, “Terahertz spectroscopic study of vertically aligned InN nanorods,” Appl. Phys. Lett., vol. 91, 163105 (2007).
[133] A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B, vol. 77, 195405 (2008).
[134] P. Parkinson, H. J. Joyce, Q. Gao, H. H. Tan, X. Zhang, J. Zou, C. Jagadish, L. M. Herz, and M. B. Johnston, “Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy,” Nano Lett., vol. 9, no. 9, pp. 3349-3353 (2009).
[135] N. Dawahre, J. Brewer, G. Shen, N. Harris, D. S. Wilbert, L. Butler, S. Balci, W. Baughman, S. M. Kim, and P. Kung, “Nanoscale characteristics of single crystal zinc oxide nanowires,” presented at the 2011 11th International Conference on Nanotechnology, Portland, Oregon, USA, Aug. 15-18, 2011, pp. 640-645.
[136] F. Kernan, A. Nadarajah, J. A. Higgins, B. Pejcinovic, and R. Koenenkamp, “Terahertz characterization of zinc oxide nanowires using parallel-plate waveguides,” presented at the 2011 11th International Conference on Nanotechnology, Portland, Oregon, USA, Aug. 15-18, 2011, pp. 404-408.
[137] P. Parkinson, C. Dodson, H. J. Joyce, K. A. Bertness, N. A. Sanford, L. M. Herz, and M. B. Johnston, “Noncontact measurement of charge carrier lifetime and mobility in GaN nanowires,” Nano Lett., vol. 12, no. 9, pp. 4600-4604 (2012).
[138] Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol., vol. 2, pp. 770-774 (2007).
[139] S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys., vol. 10, 033012 (2008).
[140] J. Petzelt, P. Kužel, I. Rychetský, A. Pashkin, and T. Ostapchuk, “Dielectric response of soft modes in ferroelectric thin films,” Ferroelectrics, vol. 288, no. 1, pp. 169-185 (2003).
[141] M. Khazan, R. Meissner, and I. Wilke, “Convertible transmission-reflection time-domain terahertz spectrometer,” Rev. Sci. Instrum., vol. 72, no. 8, pp. 3427-3430 (2001).
[142] W.-F. Sun, X.-K. Wang, and Y. Zhang, “Measurement of refractive index for high reflectance materials with terahertz time domain reflection spectroscopy,” Chin. Phys. Lett., vol. 26, no.11, 114210 (2009).
[143] A. Pashkin, M. Kempa, H. Němec, F. Kadlec, and P. Kužel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum., vol. 74, no. 11, pp. 4711-4717 (2003).
[144] S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett., vol. 79, no. 24, pp. 3923-3925 (2001).
[145] Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett., vol. 86, 241116 (2005).
[146] P. U. Jepsen, U. Møller, and H. Merbold, “Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy,” Opt. Express, vol. 15, no. 22, pp. 14717-14737 (2007).
[147] T.-T. Kang, M. Yamamoto, M. Tanaka, A. Hashimoto, A. Yamamoto, R. Sudo, A. Noda, D. W. Liu, and K. Yamamoto, “Terahertz characterization of semiconductor alloy AlInN: negative imaginary conductivity and its meaning,” Opt. Lett., vol. 34, no. 16, pp. 2507-2509 (2009).
[148] J. W. Shim, H. Cheun, J. Meyer, C. Fuentes-Hernandez, A. Dindar, Y. H. Zhou, D. K. Hwang, A. Kahn, and B. Kippelen, “Polyvinylpyrrolidone-modified indium tin oxide as an electron-collecting electrode for inverted polymer solar cells,” Appl. Phys. Lett., vol. 101, 073303 (2012).
[149] S.-Y. Liu, Y.-C. Lin, J.-C. Ye, S. J. Tu, F. W. Huang, M. L. Lee, W. C. Lai, and J. K. Sheu, “Hydrogen gas generation using n-GaN photoelectrodes with immersed indium tin oxide Ohmic contacts,” Opt. Express, vol. 19, no. S6, pp. A1196-A1201 (2011).
[150] I. Hamberg, A. Hjortsberg, and C. G. Granqvist, “High quality transparent heat reflectors of reactively evaporated indium tin oxide,” Appl. Phys. Lett., vol. 40, no. 5, pp. 362-364 (1982).
[151] G. Ma, D. Li, H. Ma, J. Shen, C. Wu, J. Ge, S. Hu, and N. Dai, “Carrier concentration dependence of terahertz transmission on conducting ZnO films,” Appl. Phys. Lett., vol. 93, 211101 (2008).
[152] D. Tsokkou, A. Othonos, and M. Zervos, “Carrier dynamics and conductivity of SnO2 nanowires investigated by time-resolved terahertz spectroscopy” Appl. Phys. Lett., vol. 100, 133101 (2012).
[153] H.-K. Nienhuys and V. Sundström, “Influence of plasmons on terahertz conductivity measurements,” Appl. Phys. Lett., vol. 87, 021101 (2005).
[154] P. Parkinson, James L.-H., Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett., vol. 7, pp. 2162-2165 (2007).
[155] W.-R. Liou, C.-Y. Chen, J.-J. Ho, C.-K. Hsu, C.-C. Chang, R. Y. Hsiao, and S.-H. Chang, “An improved alignment layer grown by oblique evaporation for liquid crystal devices,” Displays, vol. 27, pp. 69-72 (2006).
[156] J. L. Janning, “Thin film surface orientation for liquid crystals,” Appl. Phys. Lett., vol. 21, 173 (1972).
[157] W. Urbach, M. Boix, and E. Guyon, “Alignment of nematics and smetics on evaporated films,” Appl. Phys. Lett., vol. 25, 479 (1974).
[158] L. A. Goodman, J. T. Mcginn, C. H. Anderson, and F. Digeronimo, “Topography of obliquely silicon oxide films and its effect of liquid-crystal orientation,” IEEE T. Electron Dev., vol. 24, no. 7, pp. 795-804 (1977)
[159] T. Uchida, M. Ohgawara, and M. Wada, “Liquid crystal orientation on the surface of obliquely-evaporated silicon monoxide with homeotropic surface treatment,” Jpn. J. Appl. Phys., vol. 19, no. 11, pp. 2127-2136 (1980)
[160] P. Yeh and C. Gu, Optical of liquid crystal displays, Wiley, 1999.
[161] S. Faetti, M. Gatti, V. Palleschi, and T. J. Sluckin, “Almost critical behavior of the anchoring energy at the interface between a nematic liquid crystal and a SiO substrate,” Phys. Rev. Lett., vol. 55, no. 16, pp. 1681-1684 (1985)
[162] G. P. Bryan-Brown, E. L. Wood, and I. C. Sage, “Weak surface anchoring of liquid crystals,” Nature, vol. 399, pp. 338-340 (1999)