研究生: |
黃品貞 Huang, Pin-Chen. |
---|---|
論文名稱: |
聚脯胺酸胜肽結合β褶板之自組裝胜肽作為人工水解酶的催化效率探討 Design of Polyproline Peptide/ β-sheet Conjugated Assemblies as Artificial Hydrolases |
指導教授: |
洪嘉呈
Horng, Jia-Cherng |
口試委員: |
王聖凱
Wang, Sheng-Kai 吳淑褓 Wu, Shu-Pao |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 胜肽 、聚脯胺酸胜肽 、β褶板 、人工水解酶 、催化 、自組裝 |
外文關鍵詞: | Peptide, Polyproline peptide, β-sheet, Artificial hydrolases, Catalysis, Self-assembly |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,有許多研究致力於使用合成胜肽作為人工水解酶,以模擬天然水解酶的催化活性與選擇性,然而設計出高催化活性的胜肽水解酶仍是一大挑戰。在本研究中,我們利用聚脯胺酸骨架與催化二聯體的概念,合成聚脯胺酸水解酶,同時利用自組裝的概念,將聚脯胺酸與具自組裝能力的胜肽耦合,以製備含有β褶板結構的自組裝水解酶。藉由改變脯胺酸骨架與催化二聯體位置等,我們設計出一系列的人工水解酶,以探討不同因素對於結構與催化效率的影響。比較本實驗室過去所研究i→i+3位置的催化二聯體,此篇研究致力於i→i+2位置催化二聯體,並統整相似的人工水解酶以進行比較。我們以理論計算模擬可能的胜肽結構與催化二聯體的距離,以CD光譜儀鑑定結構與穩定性,利用穿透式電子顯微鏡觀測大型結構,並利用UV-Vis光譜追蹤酯類水解反應的進行,以評估人工水解酶之催化活性。我們發現結構的穩定性對於催化效果有重要的影響,而催化二聯體的距離、立體障礙、合適的活性中心等也會影響催化效率。除此之外我們的人工水解酶對於較難水解的磷酯類受質與醯胺類受質,也有些微的水解能力。整體來說,本研究合成高催化活性的胜肽為基底之人工水解酶,並探討結構與催化二聯體位置等因素所帶來的影響,有助於設計更具催化活性的人工水解酶。
Recently, several studies have been devoted to synthesizing artificial hydrolases to mimic catalytic activity and selectivity of natural hydrolases. However, it is challenging to design artificial hydrolases with high catalytic activity. In this study, we used polyproline scaffold and the concept of catalytic dyad to synthesize peptide-based hydrolases. Additionally, we used the concept of self-assembly to conjugate polyproline peptides into the self-assembly β-sheets to design hydrolases. By changing proline scaffold and position of the catalytic dyad, we designed a series of artificial hydrolases to study the influences on structure and catalytic efficiency. Comparing to the catalytic dyad at the i→i+3 position which was previously studied in our laboratory, this research is focused on the catalytic dyad at the i→i+2 position. We also integrated similar artificial hydrolases for comparison. We used theoretical calculations to simulate possible peptide structures and the distances between catalytic dyads. We characterized the peptide structures and stability with CD spectroscopy, and examine the assembled structures with electron microscopy. Finally, we used UV-Vis spectroscopy to track the progress of the ester hydrolysis reaction for evaluating the catalytic activities of our designed artificial hydrolases. We find that the stability of the structure plays an important role on catalytic efficiency. Besides, the distances of the catalytic dyad, steric effects, suitable binding pockets, etc. also affect catalytic efficiency. Furthermore, our peptide-based hydrolases also have slight abilities to hydrolyze phosphate ester substrates and amide substrates which are much more difficult to hydrolyze than ester substrates. In conclusion, we synthesized peptides based artificial hydrolases with high catalytic activities, and studied the influences of structure and catalytic dyad positions, which is helpful to design more efficient artificial hydrolases.
1. Allen, W.D.; Czinki, E.; Császár, A.G. Molecular structure of proline. Chem. Eur. J. 2004, 10, 4512-4517.
2. Lesarri, A.; Mata, S.; Cocinero, E.J.; Blanco, S.; López, J.C.; Alonso, J.L. The structure of neutral proline. Angew. Chem. Int. Ed. 2002, 41, 4673-4676.
3. Moradi, M.; Babin, V.; Roland, C.; Darden, T.A.; Sagui, C. Conformations and free energy landscapes of polyproline peptides. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 20746-20751.
4. Kakinoki, S.; Hirano, Y.; Oka, M. On the stability of polyproline-I and II structures of proline oligopeptides. Polym. Bull. 2005, 53, 109-115.
5. Adzhubei, A.A.; Sternberg, M.J.E.; Makarov, A.A. Polyproline-II helix in proteins: structure and function. J. Mol. Biol. 2013, 425, 2100-2132.
6. Rath, A.; Davidson, A.R.; Deber, C.M. The structure of "unstructured" regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition. Biopolymers. 2005, 80, 179-185.
7. Kelly, M.A.; Chellgren, B.W.; Rucker, A.L.; Troutman, J.M.; Fried, M.G.; Miller, A.F.; Creamer, T.P. Host-guest study of left-handed polyproline II helix formation. Biochemistry. 2001, 40, 14376-14383.
8. Traub, W.; Shmueli, U. Structure of poly-L-proline I. Nature. 1963, 198, 1165-1166.
9. Cowan, P.M.; McGavin, S. Structure of poly-L-proline. Nature. 1955, 176, 501-503.
10. Bochicchio, B.; Tamburro, A.M. Polyproline II structure in proteins: Identification by chiroptical spectroscopies, stability, and functions. Chirality. 2002, 14, 782-792.
11. Lopes, J.L.S.; Miles, A.J.; Whitmore, L.; Wallace, B.A. Distinct circular dichroism spectroscopic signatures of polyproline II and unordered secondary structures: Applications in secondary structure analyses. Protein Sci. 2014, 23, 1765-1772.
12. Horng, J.-C.; Raines, R.T. Stereoelectronic effects on polyproline conformation. Protein Sci. 2006, 15, 74-83.
13. Hinderaker, M.P.; Raines, R.T. An electronic effect on protein structure. Protein Sci. 2003, 12, 1188-1194.
14. Chiang, Y.-C.; Lin, Y.-J.; Horng, J.-C. Stereoelectronic effects on the transition barrier of polyproline conformational interconversion. Protein Sci. 2009, 18, 1967-1977.
15. Kotch, F.W.; Guzei, I.A.; Raines, R.T. Stabilization of the collagen triple helix by o-methylation of hydroxyproline residues. J. Am. Chem. Soc. 2008, 130, 2952-2953.
16. Bretscher, L.E.; Jenkins, C.L.; Taylor, K.M.; DeRider, M.L.; Raines, R.T. Conformational stability of collagen relies on a stereoelectronic effect. J. Am. Chem. Soc. 2001, 123, 777-778.
17. Taylor, C.M.; Hardré, R.; Edwards, P.J.B. The impact of pyrrolidine hydroxylation on the conformation of proline-containing peptides. J. Org. Chem. 2005, 70, 1306-1315.
18. Drakenberg, T.; Forsen, S. The ester bond. II. Nuclear magnetic-resonance studies of tert-butyl formate. J. Phys. Chem. A. 1972, 76, 3582-3586.
19. Yates, K.; McClelland, R.A. Mechanisms of ester hydrolysis in aqueous sulfuric acids. J. Am. Chem. Soc. 1967, 89, 2686-2692.
20. Stefanidis, D.; Jencks, W.P. General base catalysis of ester hydrolysis. J. Am. Chem. Soc. 1993, 115, 6045-6050.
21. Bender, M.L.; Turnquest, B.W. The imidazole-catalyzed hydrolysis of p-nitrophenyl acetate. J. Am. Chem. Soc. 1957, 79, 1652-1655.
22. Kirsch, J.F.; Jencks, W.P. Base catalysis of imidazole catalysis of ester hydrolysis. J. Am. Chem. Soc. 1964, 86, 833-837.
23. Bezer, S.; Matsumoto, M.; Lodewyk, M.W.; Lee, S.J.; Tantillo, D.J.; Gagné, M.R.; Waters, M.L. Identification and optimization of short helical peptides with novel reactive functionality as catalysts for acyl transfer by reactive tagging. Org. Biomol. Chem. 2014, 12, 1488-1494.
24. Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: from 3D structure to function. Chem. Biol. Interact. 2010, 187, 10-22.
25. Ong, E.B.; Shaw, E.; Schoellmann, G. An active center histidine peptide of α-chymotrypsin. J. Am. Chem. Soc. 1964, 86, 1271-1272.
26. Shaw, E. Evidence for an active-center histidine in trypsin through use of a specific reagent, 1-chloro-3-tosylamido-7-amino-2-heptanone, the chloromethyl ketone derived from N^α-tosyl-L-lysine. Biochemistry. 1965, 4, 2219-2224.
27. Ting, Y.-H.; Chen, H.-J.; Cheng, W.-J.; Horng, J.-C. Zinc(II)–histidine induced collagen peptide asemblies: morphology modulation and hydrolytic catalysis evaluation. Biomacromolecules. 2018, 19, 2629-2637.
28. Daviter, T.; Wieden, H.-J.; Rodnina, M.V. Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. J. Mol. Biol. 2003, 332, 689-699.
29. Marrs, T.C. Organophosphate poisoning. Pharmacol. Ther. 1993, 58, 51-66.
30. Zhao, S.; Xu, W.; Zhang, W.; Wu, H.; Guang, C.; Mu, W. In-depth biochemical identification of a novel methyl parathion hydrolase from Azohydromonas australica and its high effectiveness in the degradation of various organophosphorus pesticides. Bioresour. Technol. 2021, 323, 124641.
31. Pierre, A. Enzymatic carbon dioxide capture. ISRN Mech. Eng. 2012, 2012, 1-22.
32. Kim, K.-M.; Park, H.-W.; Shim, G.-S.; Jang, S.W.; Kim, H.-J.; Chae, G.-S.; Shin, S.; Lee, J.-H. Mechanical properties and decomposition performance of peelable coating containing UiO-66 catalyst and waterborne silane-terminated polyurethane dispersions. J. Mater. Sci. 2020, 55, 2604–2617.
33. Hanekop, N.; Zaitseva, J.; Jenewein, S.; Holland, I.B.; Schmitt, L. Molecular insights into the mechanism of ATP-hydrolysis by the NBD of the ABC-transporter HlyB. FEBS Lett. 2006, 580, 1036-1041.
34. Rosenblat, M.; Gaidukov, L.; Khersonsky, O.; Vaya, J.; Oren, R.; Tawfik, D.S.; Aviram, M. The catalytic histidine dyad of high density lipoprotein-associated serum paraoxonase-1 (PON1) Is essential for PON1-mediated Inhibition of low density lipoprotein oxidation and stimulation of macrophage cholesterol efflux. J. Biol. Chem. 2006, 281, 7657-7665.
35. Corey, D.R.; Craik, C.S. An investigation into the minimum requirements for peptide hydrolysis by mutation of the catalytic triad of trypsin. J. Am. Chem. Soc. 1992, 114, 1784-1790.
36. Hung, P.-Y.; Chen, Y.-H.; Huang, K.-Y.; Yu, C.-C.; Horng, J.-C. Design of polyproline-based catalysts for ester hydrolysis. ACS Omega. 2017, 2, 5574-5581.
37. Leščić Ašler, I.; Štefanić, Z.; Maršavelski, A.; Vianello, R.; Kojić-Prodić, B. Catalytic dyad in the SGNH hydrolase superfamily: In-depth Insight into structural parameters tuning the catalytic process of extracellular lipase from streptomyces rimosus. ACS Chem Biol. 2017, 12, 1928-1936.
38. Ordentlich, A.; Barak, D.; Kronman, C.; Ariel, N.; Segall, Y.; Velan, B.; Shafferman, A. Functional characteristics of the oxyanion hole in human acetylcholinesterase. J. Biol. Chem. 1998, 273, 19509-19517.
39. Bryan, P.; Pantoliano, M.W.; Quill, S.G.; Hsiao, H.Y.; Poulos, T. Site-directed mutagenesis and the role of the oxyanion hole in subtilisin. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 3743-3745.
40. Náray-Szabó, G.; Oláh, J.; Krámos, B. Quantum mechanical modeling: A tool for the understanding of enzyme reactions. Biomolecules. 2013, 3, 662-702.
41. Goettig, P.; Brandstetter, H.; Magdolen, V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie. 2019, 166, 52-76.
42. Duncan, K.L.; Ulijn, R.V. Short peptides in minimalistic biocatalyst design. Biocatalysis. 2015, 1, 67-81.
43. Matsumoto, M.; Lee, S.J.; Gagné, M.R.; Waters, M.L. Cross-strand histidine–aromatic interactions enhance acyl-transfer rates in beta-hairpin peptide catalysts. Org. Biomol. Chem. 2014, 12, 8711-8718.
44. Lindgren, N.J.V.; Varedian, M.; Gogoll, A. Photochemical regulation of an artificial hydrolase by a backbone Incorporated tertiary structure switch. Chem. Eur. J. 2009, 15, 501-505.
45. Wang, P.S.P.; Nguyen, J.B.; Schepartz, A. Design and high-resolution structure of a β3-peptide bundle catalyst. J. Am. Chem. Soc. 2014, 136, 6810-6813.
46. Zhang, Q.; He, X.; Han, A.; Tu, Q.; Fang, G.; Liu, J.; Wang, S.; Li, H. Artificial hydrolase based on carbon nanotubes conjugated with peptides. Nanoscale. 2016, 8, 16851-16856.
47. Zaramella, D.; Scrimin, P.; Prins, L.J. Self-assembly of a catalytic multivalent peptide–nanoparticle complex. J. Am. Chem. Soc. 2012, 134, 8396-8399.
48. Zhang, C.; Xue, X.; Luo, Q.; Li, Y.; Yang, K.; Zhuang, X.; Jiang, Y.; Zhang, J., et al. Self-assembled peptide nanofibers designed as biological enzymes for catalyzing ester hydrolysis. ACS Nano. 2014, 8, 11715-11723.
49. Rufo, C.M.; Moroz, Y.S.; Moroz, O.V.; Stöhr, J.; Smith, T.A.; Hu, X.; DeGrado, W.F.; Korendovych, I.V. Short peptides self-assemble to produce catalytic amyloids. Nat. Chem. 2014, 6, 303-309.
50. Poznik, M.; König, B. Cooperative hydrolysis of aryl esters on functionalized membrane surfaces and in micellar solutions. Org. Biomol. Chem. 2014, 12, 3175-3180.
51. Yu, L.; Li, F.-z.; Wu, J.-y.; Xie, J.-q.; Li, S. Development of the aza-crown ether metal complexes as artificial hydrolase. J. Inorg. Biochem. 2016, 154, 89-102.
52. Wang, M.; Lv, Y.; Liu, X.; Qi, W.; Su, R.; He, Z. Enhancing the activity of peptide-based artificial hydrolase with catalytic ser/his/asp triad and molecular imprinting. ACS Appl. Mater. Interfaces. 2016, 8, 14133-14141.
53. Huang, K.-Y.; Yu, C.-C.; Horng, J.-C. Conjugating catalytic polyproline fragments with a self-assembling peptide produces efficient artificial hydrolases. Biomacromolecules. 2020, 21, 1195-1201.
54. 游奇縉. 碩士論文. 2020, 國立清華大學.
55. Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149-2154.
56. Circular dichroism. 2020, retrieved from: https://chem.libretexts.org/@go/page/1761. (accessed on 2021/7/7)
57. Ranjbar, B.; Gill, P. Circular dichroism techniques: biomolecular and nanostructural analyses- A review. Chem. Biol. Drug Des. 2009, 74, 101-120.
58. Purdie, N. Circular dichroism and the conformational analysis of biomolecules. J. Am. Chem. Soc. 1996, 118, 12871-12871.
59. Swinehart, D.F. The Beer-Lambert law. J. Chem. Educ. 1962, 39, 333.
60. Kelly, S.M.; Jess, T.J.; Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta. 2005, 1751, 119-139.
61. Wei, Y.; Thyparambil, A.; Latour, R. Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190-230 nm. Biochim. Biophys. Acta. 2014, 1844, 2331-2337.
62. Woody, R.W. Circular dichroism spectrum of peptides in the poly(pro)II conformation. J. Am. Chem. Soc. 2009, 131, 8234-8245.
63. Michaelis, L.; Menten, M.; Johnson, K.A.; Goody, R. The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry. 2011, 50 39, 8264-8269.
64. Frisch, M.J.T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01. 2016.
65. Tao, K.; Wang, J.; Zhou, P.; Wang, C.; Xu, H.; Zhao, X.; Lu, J.R. Self-assembly of short Aβ(16−22) peptides: effect of terminal capping and the role of electrostatic interaction. Langmuir. 2011, 27, 2723-2730.
66. Zhong, H.; Carlson, H.A. Conformational studies of polyprolines. J. Chem. Theory Comput. 2006, 2, 342-353.
67. Kuemin, M.; Schweizer, S.; Ochsenfeld, C.; Wennemers, H. Effects of terminal functional groups on the stability of the polyproline II structure: a combined experimental and theoretical study. J. Am. Chem. Soc. 2009, 131, 15474-15482.
68. Rajagopal, K.; Ozbas, B.; Pochan, D.J.; Schneider, J.P. Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators. Eur. Biophys. J. 2006, 35, 162-169.
69. Zhang, C.; Shafi, R.; Lampel, A.; MacPherson, D.; Pappas, C.G.; Narang, V.; Wang, T.; Maldarelli, C., et al. Switchable hydrolase based on reversible formation of supramolecular catalytic site using a self-assembling peptide. Angew. Chem. Int. Ed. 2017, 56, 14511-14515.
70. Isom, D.G.; Castañeda, C.A.; Cannon, B.R.; García-Moreno E., B. Large shifts in pKa values of lysine residues buried inside a protein. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 5260-5265.
71. Veloso, A.J.; Kerman, K. Modulation of fibril formation by a beta-sheet breaker peptide ligand: An electrochemical approach. Bioelectrochemistry. 2012, 84, 49-52.
72. Adessi, C.; Soto, C. Beta-sheet breaker strategy for the treatment of Alzheimer's disease. Drug Dev. Res. 2002, 56, 184-193.
73. Abedini, A.; Meng, F.; Raleigh, D.P. A single-point mutation converts the highly amyloidogenic human islet amyloid polypeptide into a potent fibrillization inhibitor. J. Am. Chem. Soc. 2007, 129, 11300-11301.
74. Kanchi, P.K.; Dasmahapatra, A.K. Polyproline chains destabilize the Alzheimer’s amyloid-β protofibrils: A molecular dynamics simulation study. J. Mol. Graphics Modell. 2019, 93, 107456.
75. Verpoorte, J.A.; Mehta, S.; Edsall, J.T. Esterase activities of human carbonic anhydrases B and C. J. Biol. Chem. 1967, 242, 4221-4229.
76. Bolon, D.N.; Mayo, S.L. Enzyme-like proteins by computational design. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 14274-14279.
77. Burton, A.J.; Thomson, A.R.; Dawson, W.M.; Brady, R.L.; Woolfson, D.N. Installing hydrolytic activity into a completely de novo protein framework. Nat. Chem. 2016, 8, 837-844.
78. Moroz, Y.S.; Dunston, T.T.; Makhlynets, O.V.; Moroz, O.V.; Wu, Y.; Yoon, J.H.; Olsen, A.B.; McLaughlin, J.M., et al. New tricks for old proteins: single mutations in a nonenzymatic protein give rise to various enzymatic activities. J. Am. Chem. Soc. 2015, 137, 14905-14911.
79. Luong, T.Q.; Erwin, N.; Neumann, M.; Schmidt, A.; Loos, C.; Schmidt, V.; Fändrich, M.; Winter, R. Hydrostatic pressure increases the catalytic activity of amyloid fibril enzymes. Angew Chem Int Ed Engl. 2016, 55, 12412-12416.
80. Lengyel, Z.; Rufo, C.M.; Moroz, Y.S.; Makhlynets, O.V.; Korendovych, I.V. Copper-containing catalytic amyloids promote phosphoester hydrolysis and tandem reactions. ACS Catalysis. 2018, 8, 59-62.
81. Friedmann, M.P.; Torbeev, V.; Zelenay, V.; Sobol, A.; Greenwald, J.; Riek, R. Towards prebiotic catalytic amyloids using high throughput screening. PLOS ONE. 2015, 10, e0143948.
82. Huang, Z.; Guan, S.; Wang, Y.; Shi, G.; Cao, L.; Gao, Y.; Dong, Z.; Xu, J., et al. Self-assembly of amphiphilic peptides into bio-functionalized nanotubes: a novel hydrolase model. J. Mater. Chem. B. 2013, 1, 2297-2304.