簡易檢索 / 詳目顯示

研究生: 謝旻樺
Heieh, Min-Hua
論文名稱: Transformed Gamma分配下死亡率債券定價
Pricing Mortality Bond with Transformed Gamma Distribution
指導教授: 蔡子晧
口試委員: 鄭宏文
曾祺峰
蔡子晧
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 計量財務金融學系
Department of Quantitative Finance
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 32
中文關鍵詞: 死亡率債券風險中立評價關係式均衡訂價法定價核log-gamma分配Weibull分配
外文關鍵詞: Swiss Re Mortality Bond, Risk Neutral Valuation Relationship, Equilibrium Pricing Model, Pricing Kernel, Log-gamma Distribution, Weibull Distribution
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壽命連結商品是保險公司用於規避人們壽命延長(長壽風險)或偶然巨災事件發生(死亡率風險)的工具,這些商品利用證券化的手法將可能的損失移轉給投資人。瑞士再保險公司於2003年底推出的Swiss Re mortality bond 就是個相當成功的例子,也是本文用於訂價之商品。文章中引入了均衡定價模型,假設死亡率指數服從Transformed Gamma分配,且假設投資人的期末財富、邊際效用及標的資產的期末價值以特定的形式表達,經由這三層假設得到風險中立評價關係式。因此,以無風險利率折現的期望報酬便可視為壽命連結商品的價格,進一步也可推導出類似Black-Scholes 公式的封閉解,建構於Transformed Gamma分配下的債券參考價格便可得知。


    Due to the frequent catastrophes all over the world in recent years, it causes the extreme mortality rate and gives the insurance companies and reinsurance companies a pound. In order to transfer the mortality systematic risk to capital markets, the mortality-linked securities were issued. The issuance of Swiss Re mortality bond in the end of 2003 year is an example. In this paper, we assume the mortality rate has a transformed gamma distribution and the security is priced by an equilibrium method in the discrete time economy. Furthermore, the risk neutral valuation relationship (RNVR) is obtained. The price of any life-related security is the sum of expected payoff discounted by risk-free rate. Finally, under the restricted conditions of the investor’s preference, the distribution of the mortality and wealth, we can obtain the closed-form solution of the mortality-linked securities and we take the Swiss Re mortality bond as numerical example.

    摘要 ii Abstract iii Table of Contents iv List of Figures v List of Tables vi 1 Introduction 1 2 Literature Review 3 2.1 The Mortality Bond 3 2.2 The Mortality Process 5 2.3 The Transformed Gamma Distribution 6 3 Pricing Model 9 3.1 Equilibrium Pricing Model 9 3.2 Security Price 11 3.3 The Closed-form Solutions for Option Price 14 4 Parameter Estimation and Valuation 16 4.1 The Simulation of Mortality Index 16 4.2 Parameter Estimation by Transformed Gamma Distribution 17 4.3 Mortality Bond Valuation 22 5 Conclusion 25 Appendix 26 Appendix A: Prove the pricing kernel and asset-specific pricing kernel 26 Appendix B. Prove Corollary 1 28 Appendix C. Derive log gamma option pricing formula 28 Appendix D. Derive Weibull option pricing formula 29 Reference 31

    1.Black, F., and M. Scholes, (1973). “The pricing of options and corporate liabilities.” Journal of Political Economy, 81, 637-654.
    2.Blake, D., A.J. Cairns, and K. Dowd, (2006a). “Living with Mortality: Longevity Bonds and Other Mortality-Linked Securities.” British Actuarial Journal, 12, 153-197.
    3.Brennan, M.J., (1979). “The pricing of contingent claims in discrete time models.” Journal of Finance, 34, 53-68.
    4.Cairns, A.J., D. Blake and K. Dowd, (2006a). “Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk.” ASTIN Bulletin, 36, 79-120.
    5.Cairns, A.J., D. Blake and K. Dowd, (2006b). “A Two-factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration.” Journal of Risk and Insurance, 73, 687-718.
    6.Camara, A., (2003). “A Generalization of the Brennan-Rubinstein for the Pricing of Derivatives.” Journal of Finance, 58, 805-819.
    7.Chen, H., and S.H. Cox, (2009). “Modelinh Mortality with Jumps: Applications to Mortality Securitization.” Journal of Risk and Insurance, 76, 727-751.
    8.Franke, G., J. Huang,, and R. Stapleton, (2006). “Two-dimensional risk-neutral valuation relationships for the pricing of options.” Review of Derivatives Research, 9(3), 213-327.
    9.Lin, Y., and S. H. Cox,, (2008). “Securitization of Catastrophe Mortality Risks.” Insurance: Mathematics and Economics, 42, 628-637.
    10.McKay, A. T., (1934). “Sampling from batches.” Journal of the Royal Statistical Society, Series B, 1, 207-216.
    11.Milevsky, M.A. and S.D. Promislow, (2001). “Mortality derivatives and the option to annuitize.” Insurance: Mathematics and Economics, 29, 299-318.
    12.Rubinstein, M., (1976). “The valuation of uncertain income streams and the pricing of options.” Bell Journal of Economics and Management Science, 7, 407-425.
    13.Schroder, M., (2004). “Risk-neutral parameters shifts and derivatives pricing in discrete time.” Journal of Finance, 59, 2375-2401.
    14.Tsai, J.T., and L.Y. Tzeng, (2013). “The Pricing of Mortality-linked Contingent Claims: an Equilibrium Approach.” ASTIN Bulletin, forthcoming.
    15.Wang, S.S., (2000). “A class of distortion operations for pricing financial and insurance risks.” Journal of Risk and Insurance, 67, 15-36.
    16.Wang, S.S., (2002). “A universal framework for pricing financial and insurance risks.” ASTIN Bulletin, 32, 213-234.
    17.Vitiello, L., (2010). “General Equilibrium and Preference Free Model for Pricing Options under Transformed Gamma Distribution.” Journal of Futures Market, 30, 409-431.
    18.Vitiello, L., and S. Poon, (2008). “General equilibrium and risk neutral framework for option pricing with a mixture of distributions.” Journal of Derivatives, 15, 48-60.
    19.Yue, S., T. Ourada, and B. Bobee, (2001). A review of bivariate gamma distribution for hydrological application. Journal of Hydrology, 246, 1-18.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE