研究生: |
王永達 Wang Yung Ta |
---|---|
論文名稱: |
高旋光角度解析能力之改良式偏光儀應用於光學活性物質的濃度量測 Improved polarimeter with high resolution of optical rotation angle for concentration measurement of optical activity media |
指導教授: |
吳見明
Wu Chien Ming |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 偏光儀 、旋光角 、光學活性物質 、對掌性物質 |
外文關鍵詞: | polarimeter, optical rotation angle, optical activity media, chiral media |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此次的研究中,我們針對一共光程外差干涉之偏光儀進行改良。除了原有為了要減少量測中的外在因素對訊號所產生的干擾,而採用的共光程干涉技術,以及濾除非偵測頻率範圍的光源所造成的雜訊來提高系統的訊雜比,而採用的外差干涉技術之外,我們更換了一新型的相位可調式波片SBC及設計了一套樣品傳輸裝置去自動化我們的系統。我們以電腦控制SBC的相位延遲量與快軸角度,再以電磁閥搭配蠕動泵浦傳輸樣品,如此一來,可以穩定和精確地利用SBC去增強樣品對入射光源造成的旋光角度所引起的相位差訊號,而在衡量了訊雜比的相關性後,這個放大的能力約為45倍。在實驗中,利用改良後的共光程外差干涉式偏光儀去進行葡萄糖溶液的旋光角度及濃度量測,並且探討是否加入聚苯乙烯溶液造成散射性物質的情形。實驗結果顯示,在散射及非散射性物質的情形下,我們分別得到旋光角度解析能力為2.23×10-4、8.93×10-5度,其對應到濃度解析能力為5.6 mg/dl、2.2 mg/dl,而在偵測極限方面,同為15.6 mg/dl。我們預期若是系統的穩定性更加改善的話,此改良式的偏光儀在未來將非常有機會被應用於糖尿病患者的非侵入式血糖濃度偵測。
In this study, we improved an optical common-path heterodyne polarimeter. We not only utilize the common-path setup to reduce noises from the environment, but also use the heterodyne technique to pick up signals with other frequencies. Furthermore, we replace with the old phase-variable waveplate with a Soleil-Babinet compensater(SBC) and design a sample transmission setup to automate our system. We control the phase retardation and orientation angle of the SBC with specialized software installed in the computer. And collocate the electromagnetic valve and peristalsis pump to transmit sample solutions. Therefore, We can steadily and precisely enhance the phase difference signal induced by the chiral media. After the improvement, the system demonstrated an enhancement of about 45. We use this improved polarimeter to measure the optical rotation angles of different concentrations of glucose solution with and without polystyrene respectively. After calculating, the resolutions of optical rotation angle of glucose solution with and without polystyrene are 2.23×10-4 and 8.93×10-5 degree respectively, the corresponding concentration of glucose resolution are 5.6 mg/dl、2.2 mg/dl. For detection limit, both two cases have the same value 15.6 mg/dl. We expect that, by further improvement for stability, it can be applied in noninvasive blood glucose concentration monitoring for diabetics in the future.
[1] 行政院衛生署衛生統計資訊,”台灣地區縣市死因統計結果”,民國93年。(http://www.doh.gov.tw/statistic/index.htm)
[2] J. Byungjo, “An Overview of Biomedical Optics & Noninvasive Optical Glucose Sensing”, Texas A&M University Beckman Laser Institute, Dec. 23, 2002.
[3] The Diabetes Control & Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes”, The New England Journal of Medicine, 329, 977-986, 1993.
[4] K. Danzer, Ch. Fischbacher and K. U. Jagemann, “Near-infrared diffuse reflection spectroscopy for non-invasive blood-glucose monitoring”, IEEE-leos Newsleter, 12, 1998.
[5] M. Kohl and M. Cope, “Influence of glucose concentration on light scattering in tissue-simulating phantoms”, Opt. Lett., 19, 2170-2172, 1994.
[6] T. W. Koo, A. J. Berger and I. Itzkan, “Measurement of glucose in human blood serum using Raman spectroscopy”, IEEE-LEOS, 12, 1998.
[7] R. J. McNichols, B. D. Cameron, and G. L. Coté, “Development of a noninvasive polarimetric glucose sensor”, IEEE-LEOS Newsletter, 12, 30-31, 1998.
[8] B. Rabinovitch, W. F. March, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotation”, Diabetes Care, 5, 254-258, 1982.
[9] W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens”, Diabetes Care, 5, 259-265, 1982.
[10] D. A. Gough, “The composition and optical rotatory dispersion of bovine aqueous humor”, Diabetes Care, 5, 3, May-June 1982.
[11] T. W. King, G. L. Cote, “Multispectral polarimetric glucose detection using a single Pockels cell”, Opt. Eng., 33, 8, August 1994.
[12] J. S. Baba, B. D. Cameron and G. L. Cote, “Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye”, J. Biomed. Opt., 7(3), 321-328, July 2002.
[13] H. Anumula and A. Nezhuvingal, “Development of non-invasive corneal birefringence compensated glucose sensing polarimeter:, University of Toledo.
[14] J. M. Bueno, “The influence of depolarization and corneal birefringence on ocular polarization”, J. Opt. A:Pure Appl. Opt., 6, 91-99, 2004.
[15] C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, “Noninvasive glucose monitoring in vivo with optical heterodyne polarimeter”, Appl. Opt., 37, 3553-3557, 1998.
[16] G. Yoon, A. K. Amerov and Y. J. Kim, “Determination of glucose concentration in a scattering medium based on selected wavelengths by use of an overtone absorption band”, Appl. Opt., 41, 1469-1475, 2002.
[17] T. Mitsui and K. Sakural, “Precise measurement of the refractive index and optical rotatory power of a suspension by a delayed optical heterodyne technique”, Appl. Opt., 35, 2253-2258, 1996.
[18] C. M. Feng and Y. C. Huang, “A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement”, Opt. Comm., 141, 314-321, 1997.
[19] C. Chou, W. C. Kuo and T. S. Hsieh, “A phase sensitive optical rotation measurement in a scattered chiral medium using a Zeeman laser”, Opt. Comm., 230, 259-266, 2004.
[20] Y. H. Chan, C. Chou and J. S. Wu, “Properties of a diffused photon-pair density wave in a multiple-scattering medium”, Appl. Opt., 44, 1416-1425, 2005.
[21] M. P. Silverman, and W. Strange, “Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid”, Opt. Comm., 132, 410-416, 1996.
[22] K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media”, J. Biomed. Opt., 7, 291-299, July 2002.
[23] I. A. Vitkin and E. Hoskinson, “Polarization studies in multiply scattering chiral media”, Opt. Eng., 39, 353-362, February 2002.
[24] I. A. Vitkin and R. D. Laszlo, “Effects of molecular asymmetry of optically active molecules on the polarization properties of multiply scattered light”, Opt. Exp., 10, 222-229, February 2002.
[25] D. Cote and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms”, J. Biomed. Opt., 9, 213-220, February 2004.
[26] D. Cote and I. A. Vitkin, “Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations”, Opt. Exp. 13, 148-163, January 2005.
[27] 蔡英傑,『碩士論文:靈敏度增強型光學外差式偏光儀之研發及其應用於對掌性物質的旋光角度量測』,民國93年7月。
[28] H. Hart, L. E. Craine. and D. J. Hart, “Organic Chemistry”, ch5, 學富文化事業有限公司, 2001.
[29] 冀政勤、毛翰梅,有機化學,第五章,五南圖書有限公司,台北,2001。
[30] 趙凱華、鐘錫華,光學,第七章,儒林圖書有限公司,台北,1997。
[31] C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry”, Sens. Actu, B, 92, 133-136, 2003.
[32] 包明驥,『碩士論文:改良式共光程外差干涉術應用於表面電漿共振感測器之研究』,民國92年6月。
[33] 莊益宗,『碩士論文:角度干涉儀之研發』,民國91年6月。
[34] C. M. Wu and Y. T. Chuang, “Precision roll angle measurement by use of a retardation-tunable wave-plate”, thesis in National Taipei University of Technology, 2002.