簡易檢索 / 詳目顯示

研究生: 牛曰舜
論文名稱: 鋅取代鈣矽酸鹽之新式骨水泥研究
Novel Zn Substituted Calcium Silicate Bone Cement
指導教授: 金重勳
鍾仁傑
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 85
中文關鍵詞: 波特蘭水泥三鈣矽酸鹽氧化鋅膠原蛋白壓縮強度注射度皮下注射
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三鈣矽酸鹽C3S (3CaO•SiO2)是工業用波特蘭水泥的主要成分之一,具有水泥的自固化特性,我們以固相反應法合成C3S,並在添加可抑止細菌繁殖且穩定C3S結構之ZnO,得到ZnxCa(3-x)SiO5的合成物,將粉末混合NaH2PO4溶液及膠原蛋白(collagen)製成無機系骨水泥,並做各項機性與生物方面的測試並討論之。
    由X-ray鑑定得知添加ZnO後可減少CaO的析出,但過量的添加會導致ZnO雜相的殘留。後續實驗採用Zn0.25Ca2.75SiO5粉末作為骨水泥的主要原料,以10wt% NaH2PO4做為混合溶液以調製適當之pH值(9~10),此骨泥配方操作時間為30分鐘,固化時間為90分鐘。之後並嚐試在粉末中混合少量的膠原蛋白(1wt%),結果顯示水合反應將稍微延遲使得初期壓縮強度稍稍降低(由30MPa降為10MPa);添加了膠原蛋白後,固化時間在適當範圍內,但由於其良好的黏結能力而大幅降低注射能力。在生物實驗方面,添加膠原蛋白延緩固化時間及離子析出,鼠纖維母細胞可直接貼附於材料上,但皮下注射後的骨水泥引起老鼠部分的過敏現象發生。
    另外,以製成的粉末混合較大比例之膠原蛋白後,獲得強度佳且具有較好的塑性能力之水泥碇塊,也因為具有初期之特殊黏彈性,其固化時間也相對延緩許多。


    Abstract
    Tricalcium silicate (C3S) is one of the main constituent of industrial Portland cement which exhibits well self-setting ability. In this study we synthesized ZnxCa3-xSiO5 through solid-state reaction methods by adding ZnO, which is able to stabilize the structure of C3S and is anti-bacterial. And then, NaH2PO4 solution and collagen were added to prepare inorganic bone cement mixture. Mechanical and biological examinations were carried out and investigated.
    X-ray diffraction results showed that the addition of ZnO was able to reduce the phase separation of CaO, however, over addition led to ZnO impure phase. Zn0.25Ca2.75SiO5 was adapted for further studied. Bone cement mixed by NaH2PO4 solution had proper pH value (9~10), 30 minutes working time and 90 minutes setting time. Small amount collagen added mixture (1wt%) had lower early stage strength (10MPa) and longer setting time. The binding ability of collagen led the cement to having poor injection ability. As to the biological tests, added collagen would retard the releasing of ions. L929 fibroblast would attach onto the set materials directly, however hypodermic reactions were observed in the mice subcutaneous tests.
    Mixtures with large amount collagen (weight ratio of powder to collagen is from 5 to 1) were well deformable and had excellent mechanical strength after longer time setting. Their unique transitions of viscoelasticity property during the setting processes were worthy for further studies.
    Keyword: Portland cement, Tricalcium silicate (C3S), zinc oxide, collagen, compressive strength, injection ability, subcutaneous tests

    第一章 緒論 1 1-1 前言 1 1-2 研究目的 3 第二章 文獻回顧 6 2-1波特蘭水泥與C3S的基本特性 6 2-2水泥水合的過程 8 2-3 有關於ZnO 10 2-4添加膠原蛋白對C3S影響 11 2-5各種性質相對於骨水泥的影響 13 2.6添加鋅元素對於C3S的影響及Zn的量與細胞毒性 14 2.7血液常規檢查 14 第三章 材料實驗與方法 17 3-1實驗流程 17 3-2儀器設備 18 3-3實驗藥品與耗材 20 3-4 主要實驗步驟 22 3-4.1固相反應法製備ZnC3S 22 A. 起始粉末之配製與煆燒 22 B. 粉末粒徑的細化: 22 C. ZnO量的影響 23 D. 不同顆粒粒徑對粉體反應時間的影響 23 3-4.2 ZnxCa3-xSiO5的水合 23 A.磷酸鹽類溶液和ZnxCa3-xSiO5 23 B. 少量膠原蛋白和ZnxCa3-xSiO5混合後 24 C. 大量膠原蛋白和ZnxCa3-xSiO5混合後 24 3-5 有關骨水泥各種基本性質量測 25 3-5.1骨水泥各種水合性質之測試 25 A. 操作時間與固化時間 25 B. 水泥的養護 26 C. 表面pH值測試 26 D. 水泥硬化之壓縮強度測試 27 E. 注射度的量測 27 3-5.2 合成水泥粉末之成分與晶相鑑定 27 A. X光繞射分析 27 B. 掃描式電子顯微鏡 28 3-6生物體方面的測試 29 3-6.1 模擬體液之浸泡 29 3-6.2 貼附骨水泥之形貌實驗 29 A. 試片準備步驟 29 B. 固定試片過程 30 3-6.3不同天數之離子釋出對L929之毒性測試 30 A. 前置實驗 30 B. MTT實驗 31 3-7 骨水泥之老鼠皮下注射測試 31 第四章 實驗結果與討論 33 4-1 Ca3SiO5的製備 33 4-1.1 ZnxCa3-xSiO5的製備 33 4-1.2 Zn25粉末水合後的情形 37 4-2添加磷酸鹽的影響 39 4-2.1固化時間的測定 39 4-2.2粒徑和固化時間的關係 41 4-2.3 表面pH值的測定 42 4-2.4 不同溶液的X-ray分析 43 4-2.5不同溶液對抗壓強度的比較 44 4-3 添加膠原蛋白的影響 46 4-3.1固化時間的改變 46 4-3.2 pH值的改變 49 4-3.3 不同天數下壓縮強度的變化 50 4-3.4 有關注射性質 52 4-3.4添加膠原蛋白後的注射方式 54 4-4不同水合時間的性質比較 56 4-4.1 X光繞射圖形分析 56 4-4.2 SEM表面分析 58 4-5生物試驗 60 4-5.1 morphology 60 4-5.2 ICP 66 4-6 老鼠皮下注射結果 67 4-6.1 血液學檢查 67 4-6.2 組織病理學檢查 70 4-7高塑性骨水泥 74 4-7.1 高塑性骨水泥的working time / setting time 74 4-7.2 高塑性骨水泥的XRD分析 75 4-7.3 高塑性骨水泥的壓縮強度 76 第五章結論 79 第六章參考文獻 81

    1. “生醫陶瓷材料”,洪敏雄,吳世經,Proc. Of the 1990 Annual Conf. Of the Chinese Soc. For Mater. Sci,p.717-727。

    2. “醫學工程”,洪炳南,第四卷第一期,p.23-31,1984。

    3. “鈉矽磷生醫骨科玻璃陶瓷之研究”,林峰輝,成功大學礦冶及材料科學研究所博士論文,1989。

    4. “生醫用氫氧基磷灰石之研究”,韓宗立,成功大學礦冰及材料科學研究所碩士論文,1986。

    5. “The mechanical properties of recovered PMMA bone cement: A preliminary study”, R. P. S. Chaplin, A. J. C. Lee, R. M. Hooper, M. Clarke, Journal of Materials Science: Materials in Medicine, 17, p.1433~1448, 2006.

    6. “The Physicochemical Properties of the Solidificaiton of Calcium Phosphate Cement”. C.S. Liu, Y. Huang, J.G. Chen. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 69B (1), p.73~78, 2004.

    7. “The self-setting properties and in vitro bioactivity of tricalcium silicate”. W.Y. Zhao, J.Y. Wang, W.Y. Zhai, Z. Wang, J. Chang. Biomaterials 26, p.6113~6121, 2005.

    8. “A new calcium phosphate setting cement”, W.E Brown, L. C. Chow, Journal of Dental Research, 1983.

    9. “Material Characterization and In Vivo Behavior of Silicon Substituted α-Tricalcium Phosphate Cement” . C.L. Camire, C. Mochales, P. Nevsten, J.S. Wang, L. Lidgren, I. McCarthy, M.P. Ginebra, Journal of Biomedical Materials Research Part B-Applied Biomaterials 76B (2), p.424~431, 2006.

    10. “Transient element contained PSC (Partial-Stabilized Cement) as a dental retrograde-filling Material”, Lin FH, Wang WH, Lin CP, Biomaterials, 24, p.219~233.

    11. “Effects of physiological environment on the hydration behavior of mineral trioxide aggregate”, Y.L. Lee, W.H. Lan, F.H. Lin, B.S. Lee, C.P. Lin, Biomaterials, 25, p.787-793, 2004.

    12. “Biological applications of bioactive glasses”, L.I. Hench, J.K. West, Life Chemicals, 13, p.187-241, 1996.

    13. “Bioactivity of bioglasses and glass ceramics”. Ducheyne P., Kokubo T, Blitterswijk Ca, Bone-bonding biomaterials. Leidendorp: Reed Healthcare Communications, p.31-46, 1992.

    14. “Bioactivity modulation of bioactive materials in view of their application in osteoporotic patients”, M.MattioliBelmonte, A. de Benedittis, R.A.A. Muzzarelli, Journal of Materials Science: Materials in Medicine, 9, p.485, 1998.

    15. “Mechanical properties of sintered hydroxyapatite for prosthetic application”, Akao M, Journal of Materials Science, 16, p.809~812.

    16. “Bone bonding behavior of three kinds of apatite containing glass ceramics” Toshiaki Kitsugi, Journal of Biomedical Science, Vol.20, p.1295~1307, 1986.

    17. “Bioceramics of Calcium Phosphate”, K.de Groot, CRC Press, Inc., Florida, 1983.

    18. “Biomedical Materials and Devices”, J.S. Hanker, B.L. Giammara, Materils Research Society Symposium Proceedings, Vol.110, chapter 7, 1987.

    19. “Industrial Aluminous Cements”, P. Barnes, Applied Science Publ., 1981.

    20. “Calcium Aluminate Cements”, 4th Edn, P.C. Hemlett, Arnold, London, 1998.

    21. “In vitro calcium phosphate layer formation on sol-gel glasses of the CaO-SiO2 system”, I. Izquierdo-Barba, A.J. Salinas, M. Vallet-Regi, Biomaterials, p.144~150, 1999.

    22. “A model for the microstructure of calcium silicate hydrate in cement pate”, H.M. Jennings, Cement and Concrete Research, Vol.30, p.101~116, 2000.

    23. “Physicochemical properties of TTCP/DCPA system cement formed in physicological saline solution and its cytotoxicity”. D.G. Guo, K.W. Xu, H.L. Sun, Y. Han, Journal of Biomedical Materials Research Part A ,77A(2), p.313-323, 2006.
    24. “Influence of Particle Size on DCPD Hydrolysis and Setting Properties of TTCP/DCPD Cement”. Key Engineering Materials, Vols.284~286, p.23~26, 2005.

    25. “Properties of Calcium Phosphate Cement Synergistically Reinforced by Chitosan Fiber and Gelatin”, Journal of Polymer Research 13, p.323~327, 2006.

    26. “Fabrication of Zn containing apatite cement and its initial evaluation using human osteoblastic cells”. K. Ishikawa, U. Miyamoto, T. Yuasa, A. Ito, M. Nagayama, K. Suzuki, Biomaterials 23, p.423~428, 2002.

    27. “AGING AFFECTS CELLULAR ZINC AND PROTEIN-SYNTHESIS IN THE FEMORAL DIAPHYSIS OF RATS”. M. YAMAGUCHI, K. OZAKI, Research In Experimental Medicine 190, (4), p.295-300, 1990.

    28. “Bone-cements Based on Tricalcium Silicate”, R.J. Chung, T.S. Chin, Key Engineering Materials 240-2, p.337~340, 2003.

    29. “Effect of Nanostructure on Biodegradation Behaviors of Self-Setting Apatite/collagen Composite Cements Containing Vitamin K2 in Rats”, Otsuka M, Kuninaga T, Otsuka K, Higuchi WI, Journal of Biomedical Materials Research Part B-Applied Biomaterials 79b, (1), p.176-184, 2006.

    30. “Effects of collagen gel mixed with hydroxyapatite powder on interface between newly formed bone and grafted Achilles tendon in rabbit femoral bone tunnel”, Ishikawa H, Koshino T, Takeuchi R, Saito T, Biomaterials 22, p.1689~1694, 2001.

    31. “以過渡金屬添加及伽瑪射線之介穩水泥做為牙科逆向封填材料的研究”,王文熙,國立台灣大學醫學工程學研究所碩士論文,2001。

    32. “Proposed mechanism of C-S-H growth tested by soft X-ray microscopy”, E.M. Gartner, K.E. Kurtis, Cement and Concrete Research, 30, p.817-822, 2000.

    33. “Influence of γ Irradiation on the Mechanical Strength and In Vitro Biodegradation of Porous Hydroxyapatite/collagen Composite”, Shunji Yunoki, T. Ikoma, A. Monkawa, K. Ohta, J. Tanaka, The American Ceramic Society, 89, 9, p.2977~2979, 2006.

    34. “Tissue reaction to implanted root-end filling materials in the tibia and mandible of guinea pigs”. M.Torabinejad, Journal of Endodontics, 24, p.468~471, 1998.

    35. “Longitudinal evaluation of the seal of IRM root end fillings”, W.G Crooks, R.W. Anderson, Journal of Endodontics, 20, p.250~252, 1994.

    36. 血液學-第二版,第三章-血液常規檢查,p49~70,何敏夫,合記圖書出版社。

    37. “Effects of physiological environment on the hydration behavior of mineral trioxide aggregate”, Y.L. Lee, W.H. Lan, F.H. Lin, B.S. Lee, C.P. Lin, Biomaterials, 25, p.787~793, 2004.

    38. “Augmentation of Implant Purchase with Bone Cements: An In Vitro Study of Injectability and Dough Distribution”, Gisep A, Curtis R, Hanni M, Suhm N, Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2005.

    39. “Design of novel bioactive materials through organic modification of calcium silicate”, C. Ohtsuki, T. Miyazaki, M. Kamitakahara, M. Tanihara, Journal of the European Ceramic Society, 27, p.1527–1533, 2007.

    40. “Fabrication of Zn containing apatite cement and its initial evaluation using human osteoblastic cells”, Biomaterials 23, p.423~428, 2002.

    41. “The Physicochemical Properties fo the Solidification of Calcium Phosphate Cement”, C.S. Liu, Y. Huang, J.G. Chen, Journal of Biomedical Materials Research Part B-Applied Biomaterials 69b, (1), p.73~78, 2004.

    42. “Injectable and macroporous calcium phosphate cement scaffold”, H.K. Xu, M. D. Weir, E.F. Burguera, A.M. Fraser, Biomaterials 27, p.4279~4287, 2006.

    43. “Reconstruction of calvarial bone defects using an osteoconductive material and post-implantation hyperbaric oxygen treatment”, T.M. Chen, C. Shih, T.F. Lin, F.H. Lin, Materials Science 24, p.855-860.

    44.“Self-organization mechanism in a bone-like hydroxyapatite/ collagen nanocomposite synthesized in vitro and its biological reaction in vivo”, Masanori Kikuchi, Soichiro Itoh, Shizuko Ichinose, Biomaterials 22, p.1705~1711, 2001.

    45. “Dehydrothermal cross-linking of collagen -GAG scaffolds”, M.G. Haugh1, M.J. Jaasma1, F.J. O’Brien, Bioengineering In Ireland Conference,January 27~28, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE