研究生: |
黃彥維 Yen-Wei Huang |
---|---|
論文名稱: |
台灣眼鏡蛇毒金屬蛋白水解酵素的醣化作用及其對酵素活性之影響 N-glycosylation and its effect on the enzymatic activity of SVMP |
指導教授: |
吳文桂
Wen-Guey Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 99 |
中文關鍵詞: | 蛇毒金屬蛋白水解酵素 、N鍵結醣化作用 、N鍵結醣基 、台灣眼鏡蛇 |
外文關鍵詞: | snake venom metalloproteinase, SVMP, N-linked glycosylation, N-glycosylation, N-linked glycan, N-glycan, Taiwan cobra, Naja atra |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Snake venom metalloproteinases (SVMPs) are enzymes with multiple domains classified in classes PI to PIV, and they are widely distributed in venoms of Viperidae snakes. Their main toxic effects are due to disruption of the hemostatic system and result in symptoms of human envenomation. Some of them are glycoproteins with N-linked glycosylation. However, the role of N-linked glycan and its relationship to the enzymatic activity is still unclear. We purified two novel SVMPs from Taiwan cobra (Naja atra) venom and they were identified by MS and full length sequence. Results indicated they were both PIII class SVMPs with N-linked glycan and designated as Vansigin and Atragin. After De-N-glycosylation, the enzymatic activity of Vansigin increased but Atragin decreased. According to their X-ray crystal structures and N-linked glycan locations, we suggest N-linked glycosylation play an important role in the enzymatic activity and it can also explain why the enzyme specificity of Vansigin is higher than Atragin. Based on previous research, we found there is geographic variation of CTX family expression between eastern and western origin of Taiwan cobra venom. We used chromatography and tandem MS technique to show the expression of Vansigin and Atragin also involved in this phenomenon. Surprisingly, their terminal sugars of N-linked glycan were also found variational modification in the geographic variation issue. This indicates that eastern origin of Taiwan cobra venom gland may lack gene of sialyltransferase or its N-linked glycosylation biosynthetic pathway of Vansigin has been regulated. Overall, we suggest that N-linked glycosylation in different domains will have different influences in enzymatic activity, and the same protein can have variational modification on N-linked glycan due to regional evolution.
蛇毒金屬蛋白水解酵素為具有多個功能區域的酵素並依此區分為四大類型PI到PIV,一般廣泛存在於腹蛇科及響尾蛇科,其主要的毒性及症狀來自於破壞生理平衡系統。已有許多文獻指出此酵素具有N鍵結醣基(N-linked glycan),然而其與酵素活性之間的關聯仍未明朗。台灣眼鏡蛇毒中的兩個蛇毒金屬蛋白水解酵素Vansigin及Atragin,核苷酸序列及質譜儀分析顯示兩者皆為第三類型且皆具有N鍵結醣基;移除N鍵結醣基後Vansigin活性增強而Atragin活性減弱。伴隨兩者晶體結構解出及N鍵結醣基位置的確認,我們可以合理推測N鍵結醣基在酵素活性中扮演的重要角色,同時也解釋Vansigin為何具有比Atragin更高的受質專一性。
實驗室之前研究指出,台灣東西部眼鏡蛇毒在低分子量心臟毒蛋白家族的表達有所差異,顯示了地理區域分布及環境對同種眼鏡蛇在蛇毒蛋白的分泌及表達上有所影響。此論文另一部分討論高分子量蛋白如Vansigin及Atragin是否有上述的現象。藉由層析純化來自台灣東西部個體眼鏡蛇毒,並運用串聯式質譜儀分析個體眼鏡蛇毒蛋白Vansigin及Atragin的N鍵結醣基,發現台灣東西部眼鏡蛇除了在高分子量蛋白的表達量有差異外,N鍵結醣基末端醣修飾也有變異性存在。此結果隱含分子生物學層面上,台灣東部眼鏡蛇毒腺體可能缺乏sialyltransferase的基因,或在生合成的路徑受到抑制性的調控。
綜觀以上結果,我們認為N鍵結醣基位於不同的功能區域會造成酵素活性不同的影響,且在相同蛋白上的N鍵結醣基可能因演化而造成修飾差異。
1. Daltry, J.C., W. Wuster, and R.S. Thorpe, Diet and snake venom evolution. Nature, 1996. 379(6565): p. 537-40.
2. Chen, T.S., et al., Structural difference between group I and group II cobra cardiotoxins: X-ray, NMR, and CD analysis of the effect of cis-proline conformation on three-fingered toxins. Biochemistry, 2005. 44(20): p. 7414-26.
3. Fox, J.W. and S.M. Serrano, Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon, 2005. 45(8): p. 969-85.
4. Gomis-Ruth, F.X., Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol, 2003. 24(2): p. 157-202.
5. Hooper, N.M., Families of zinc metalloproteases. FEBS Lett, 1994. 354(1): p. 1-6.
6. Pieper, M., et al., Expression, purification, characterization, and X-ray analysis of selenomethionine 215 variant of leukocyte collagenase. J Protein Chem, 1997. 16(6): p. 637-50.
7. Ramos, O.H. and H.S. Selistre-de-Araujo, Snake venom metalloproteases--structure and function of catalytic and disintegrin domains. Comp Biochem Physiol C Toxicol Pharmacol, 2006. 142(3-4): p. 328-46.
8. Satake, M., Y. Murata, and T. Suzuki, Studies on snake venom. XIII. Chromatographic separation and properties of three proteinases from Agkistrodon halys blomhoffii venom. J Biochem, 1963. 53: p. 438-47.
9. Bjarnason, J.B. and J.W. Fox, Hemorrhagic metalloproteinases from snake venoms. Pharmacol Ther, 1994. 62(3): p. 325-72.
10. Bridges, L.C. and R.D. Bowditch, ADAM-Integrin Interactions: potential integrin regulated ectodomain shedding activity. Curr Pharm Des, 2005. 11(7): p. 837-47.
11. Paine, M.J., et al., Cloning of metalloprotease genes in the carpet viper (Echis pyramidum leakeyi). Further members of the metalloprotease/disintegrin gene family. Eur J Biochem, 1994. 224(2): p. 483-8.
12. Selistre de Araujo, H.S. and C.L. Ownby, Molecular cloning and sequence analysis of cDNAs for metalloproteinases from broad-banded copperhead Agkistrodon contortrix laticinctus. Arch Biochem Biophys, 1995. 320(1): p. 141-8.
13. Gould, R.J., et al., Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med, 1990. 195(2): p. 168-71.
14. Scarborough, R.M., et al., Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms. J Biol Chem, 1993. 268(2): p. 1058-65.
15. Morris, V.L., et al., Effects of the disintegrin eristostatin on individual steps of hematogenous metastasis. Exp Cell Res, 1995. 219(2): p. 571-8.
16. Kang, I.C., Y.D. Lee, and D.S. Kim, A novel disintegrin salmosin inhibits tumor angiogenesis. Cancer Res, 1999. 59(15): p. 3754-60.
17. Souza, D.H., et al., The disintegrin-like domain of the snake venom metalloprotease alternagin inhibits alpha2beta1 integrin-mediated cell adhesion. Arch Biochem Biophys, 2000. 384(2): p. 341-50.
18. Mariano-Oliveira, A., et al., Alternagin-C, a nonRGD-disintegrin, induces neutrophil migration via integrin signaling. Eur J Biochem, 2003. 270(24): p. 4799-808.
19. Cominetti, M.R., et al., BaG, a new dimeric metalloproteinase/disintegrin from the Bothrops alternatus snake venom that interacts with alpha5beta1 integrin. Arch Biochem Biophys, 2003. 416(2): p. 171-9.
20. Cominetti, M.R., et al., Alternagin-C, a disintegrin-like protein, induces vascular endothelial cell growth factor (VEGF) expression and endothelial cell proliferation in vitro. J Biol Chem, 2004. 279(18): p. 18247-55.
21. Rahman, S., et al., Differential recognition of snake venom proteins expressing specific Arg-Gly-Asp (RGD) sequence motifs by wild-type and variant integrin alphaIIbbeta3: further evidence for distinct sites of RGD ligand recognition exhibiting negative allostery. Biochem J, 2000. 345 Pt 3: p. 701-9.
22. Okuda, D. and T. Morita, Purification and characterization of a new RGD/KGD-containing dimeric disintegrin, piscivostatin, from the venom of Agkistrodon piscivorus piscivorus: the unique effect of piscivostatin on platelet aggregation. J Biochem, 2001. 130(3): p. 407-15.
23. Yahalom, D., et al., Identification of the principal binding site for RGD-containing ligands in the alpha(V)beta(3) integrin: a photoaffinity cross-linking study. Biochemistry, 2002. 41(26): p. 8321-31.
24. Paine, M.J., et al., Purification, cloning, and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. Insights into the disintegrin gene family. J Biol Chem, 1992. 267(32): p. 22869-76.
25. Hite, L.A., et al., cDNA sequences for four snake venom metalloproteinases: structure, classification, and their relationship to mammalian reproductive proteins. Arch Biochem Biophys, 1994. 308(1): p. 182-91.
26. Zhou, Q., J.B. Smith, and M.H. Grossman, Molecular cloning and expression of catrocollastatin, a snake-venom protein from Crotalus atrox (western diamondback rattlesnake) which inhibits platelet adhesion to collagen. Biochem J, 1995. 307 ( Pt 2): p. 411-7.
27. Selistre de Araujo, H.S., D.H. de Souza, and C.L. Ownby, Analysis of a cDNA sequence encoding a novel member of the snake venom metalloproteinase, disintegrin-like, cysteine-rich (MDC) protein family from Agkistrodon contortrix laticinctus. Biochim Biophys Acta, 1997. 1342(2): p. 109-15.
28. Calvete, J.J., Structure-function correlations of snake venom disintegrins. Curr Pharm Des, 2005. 11(7): p. 829-35.
29. Marcinkiewicz, C., Functional characteristic of snake venom disintegrins: potential therapeutic implication. Curr Pharm Des, 2005. 11(7): p. 815-27.
30. Jia, L.G., et al., Inhibition of platelet aggregation by the recombinant cysteine-rich domain of the hemorrhagic snake venom metalloproteinase, atrolysin A. Arch Biochem Biophys, 2000. 373(1): p. 281-6.
31. Iba, K., et al., Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion. Am J Pathol, 1999. 154(5): p. 1489-501.
32. Siigur, E., et al., Factor X activator from Vipera lebetina venom is synthesized from different genes. Biochim Biophys Acta, 2004. 1702(1): p. 41-51.
33. Takeya, H., et al., Coagulation factor X activating enzyme from Russell's viper venom (RVV-X). A novel metalloproteinase with disintegrin (platelet aggregation inhibitor)-like and C-type lectin-like domains. J Biol Chem, 1992. 267(20): p. 14109-17.
34. Laing, G.D., et al., Inflammatory pathogenesis of snake venom metalloproteinase-induced skin necrosis. Eur J Immunol, 2003. 33(12): p. 3458-63.
35. Loria, G.D., et al., Characterization of 'basparin A,' a prothrombin-activating metalloproteinase, from the venom of the snake Bothrops asper that inhibits platelet aggregation and induces defibrination and thrombosis. Arch Biochem Biophys, 2003. 418(1): p. 13-24.
36. Gutie´rrez, J.M. and A. Rucavado, Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie, 2000. 82: p. 841─850.
37. Ohsaka, A., Hemorrhagic, necrotizing and edema-forming effects of snake venoms. Handbook of Experimental Pharmacology, 1979. 52: p. 480–546.
38. Gutierrez, J.M., et al., Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. Toxicon, 2005. 45(8): p. 997-1011.
39. Baramova, E.N., et al., Degradation of extracellular matrix proteins by hemorrhagic metalloproteinases. Arch Biochem Biophys, 1989. 275(1): p. 63-71.
40. Baramova, E.N., et al., Identification of the cleavage sites by a hemorrhagic metalloproteinase in type IV collagen. Matrix, 1990. 10(2): p. 91-7.
41. Baramova, E.N., et al., Proteolytic digestion of non-collagenous basement membrane proteins by the hemorrhagic metalloproteinase Ht-e from Crotalus atrox venom. Biomed Biochim Acta, 1991. 50(4-6): p. 763-8.
42. Shannon, J.D., et al., Amino acid sequence of a Crotalus atrox venom metalloproteinase which cleaves type IV collagen and gelatin. J Biol Chem, 1989. 264(20): p. 11575-83.
43. Johnson, E.K. and C.L. Ownby, Isolation of a hemorrhagic toxin from the venom of Agkistrodon contortrix laticinctus (broad-banded copperhead) and pathogenesis of the hemorrhage induced by the toxin in mice. Int J Biochem, 1993. 25(2): p. 267-78.
44. Selistre-de-Araujo, H.S., et al., Expression, refolding, and activity of a recombinant nonhemorrhagic snake venom metalloprotease. Protein Expr Purif, 2000. 19(1): p. 41-7.
45. Ramos, O.H. and H.S. Selistre-de-Araujo, Comparative analysis of the catalytic domain of hemorrhagic and non-hemorrhagic snake venom metallopeptidases using bioinformatic tools. Toxicon, 2004. 44(5): p. 529-38.
46. Garcia, L.T., et al., The effect of post-translational modifications on the hemorrhagic activity of snake venom metalloproteinases. Comp Biochem Physiol C Toxicol Pharmacol, 2004. 138(1): p. 23-32.
47. Kamiguti, A.S., et al., Insights into the mechanism of haemorrhage caused by snake venom metalloproteinases. Toxicon, 1996. 34(6): p. 627-42.
48. Laing, G.D. and A.M. Moura-da-Silva, Jararhagin and its multiple effects on hemostasis. Toxicon, 2005. 45(8): p. 987-96.
49. Schattner, M., et al., The snake venom metalloproteases berythractivase and jararhagin activate endothelial cells. Biol Chem, 2005. 386(4): p. 369-74.
50. Ahmed, N.K., et al., Biological and thrombolytic properties of fibrolase--a new fibrinolytic protease from snake venom. Haemostasis, 1990. 20(6): p. 334-40.
51. Toombs, C.F., Alfimeprase: pharmacology of a novel fibrinolytic metalloproteinase for thrombolysis. Haemostasis, 2001. 31(3-6): p. 141-7.
52. Ramos, O.H., A.K. Carmona, and H.S. Selistre-de-Araujo, Expression, refolding, and in vitro activation of a recombinant snake venom pro-metalloprotease. Protein Expr Purif, 2003. 28(1): p. 34-41.
53. Nikai, T., et al., Primary structure and functional characterization of bilitoxin-1, a novel dimeric P-II snake venom metalloproteinase from Agkistrodon bilineatus venom. Arch Biochem Biophys, 2000. 378(1): p. 6-15.
54. Manning, M.C., Sequence analysis of fibrolase, a fibrinolytic metalloproteinase from Agkistrodon contortrix contortrix. Toxicon, 1995. 33(9): p. 1189-200.
55. Takeya, H., et al., Primary structure of H2-proteinase, a non-hemorrhagic metalloproteinase, isolated from the venom of the habu snake, Trimeresurus flavoviridis. J Biochem, 1989. 106(1): p. 151-7.
56. Takeya, H., et al., The complete amino acid sequence of the high molecular mass hemorrhagic protein HR1B isolated from the venom of Trimeresurus flavoviridis. J Biol Chem, 1990. 265(27): p. 16068-73.
57. Takeya, H., et al., The structure and function relationships of hemorrhagic factors isolated from the venoms of Trimeresurus flavoviridis and Crotalus ruber ruber. Jpn J Med Sci Biol, 1990. 43(6): p. 252-3.
58. Gasmi, A., et al., Amino acid sequence of VlF: identification in the C-terminal domain of residues common to non-hemorrhagic metalloproteinases from snake venoms. Biochim Biophys Acta, 2000. 1481(1): p. 209-12.
59. Tsai, I.H., et al., Purification, cloning and sequence analyses for pro-metalloprotease-disintegrin variants from Deinagkistrodon acutus venom and subclassification of the small venom metalloproteases. Eur J Biochem, 2000. 267(5): p. 1359-67.
60. Watanabe, L., et al., Amino acid sequence and crystal structure of BaP1, a metalloproteinase from Bothrops asper snake venom that exerts multiple tissue-damaging activities. Protein Sci, 2003. 12(10): p. 2273-81.
61. Kini, R.M., Are C-type lectin-related proteins derived by proteolysis of metalloproteinase/disintegrin precursor proteins? Toxicon, 1996. 34(11-12): p. 1287-94.
62. Grams, F., et al., Activation of snake venom metalloproteinases by a cysteine switch-like mechanism. FEBS Lett, 1993. 335(1): p. 76-80.
63. Stocker, W. and W. Bode, Structural features of a superfamily of zinc-endopeptidases: the metzincins. Curr Opin Struct Biol, 1995. 5(3): p. 383-90.
64. Tans, G. and J. Rosing, Snake venom activators of factor X: an overview. Haemostasis, 2001. 31(3-6): p. 225-33.
65. Gutierrez, J.M. and A. Rucavado, Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie, 2000. 82(9-10): p. 841-50.
66. Hati, R., et al., Snake venom hemorrhagins. Crit Rev Toxicol, 1999. 29(1): p. 1-19.
67. Matsui, T., Y. Fujimura, and K. Titani, Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophys Acta, 2000. 1477(1-2): p. 146-56.
68. Swenson, S. and F.S. Markland, Jr., Snake venom fibrin(ogen)olytic enzymes. Toxicon, 2005. 45(8): p. 1021-39.
69. Markland, F.S., Jr., Snake venom fibrinogenolytic and fibrinolytic enzymes: an updated inventory. Registry of Exogenous Hemostatic Factors of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost, 1998. 79(3): p. 668-74.
70. Markland, F.S., Snake venoms and the hemostatic system. Toxicon, 1998. 36(12): p. 1749-800.
71. Kamiguti, A.S., et al., Proteolytic cleavage of the beta1 subunit of platelet alpha2beta1 integrin by the metalloproteinase jararhagin compromises collagen-stimulated phosphorylation of pp72. J Biol Chem, 1997. 272(51): p. 32599-605.
72. Moura-da-Silva, A.M., et al., Processing of pro-tumor necrosis factor-alpha by venom metalloproteinases: a hypothesis explaining local tissue damage following snake bite. Eur J Immunol, 1996. 26(9): p. 2000-5.
73. Ho, P.L., et al., Angiostatin-like molecules are generated by snake venom metalloproteinases. Biochem Biophys Res Commun, 2002. 294(4): p. 879-85.
74. Wu, W.B., et al., Purification, molecular cloning and mechanism of action of graminelysin I, a snake-venom-derived metalloproteinase that induces apoptosis of human endothelial cells. Biochem J, 2001. 357(Pt 3): p. 719-28.
75. Markland, F.S., et al., Thrombolytic effects of recombinant fibrolase or APSAC in a canine model of carotid artery thrombosis. Circulation, 1994. 90(5): p. 2448-56.
76. Markland, F.S., Fibrolase, an active thrombolytic enzyme in arterial and venous thrombosis model systems. Adv Exp Med Biol, 1996. 391: p. 427-38.
77. Sanchez, E.F., et al., Chimeric fibrolase: covalent attachment of an RGD-like peptide to create a potentially more effective thrombolytic agent. Thromb Res, 1997. 87(3): p. 289-302.
78. Swenson, S., L.R. Bush, and F.S. Markland, Chimeric derivative of fibrolase, a fibrinolytic enzyme from southern copperhead venom, possesses inhibitory activity on platelet aggregation. Arch Biochem Biophys, 2000. 384(2): p. 227-37.
79. Swenson, S., et al., Alpha-fibrinogenases. Curr Drug Targets Cardiovasc Haematol Disord, 2004. 4(4): p. 417-35.
80. Taylor, M.E., Drickamer, K., Introduction to Glycobiology. 2nd ed. 2006.
81. Alper, J., Searching for medicine's sweet spot. Science, 2001. 291(5512): p. 2338-43.
82. Drickamer, K. and M.E. Taylor, Evolving views of protein glycosylation. Trends Biochem Sci, 1998. 23(9): p. 321-4.
83. Dwek, R.A., Glycobiology: "towards understanding the function of sugars". Biochem Soc Trans, 1995. 23(1): p. 1-25.
84. Lis, H. and N. Sharon, Protein glycosylation. Structural and functional aspects. Eur J Biochem, 1993. 218(1): p. 1-27.
85. Burda, P. and M. Aebi, The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta, 1999. 1426(2): p. 239-57.
86. Knauer, R. and L. Lehle, The oligosaccharyltransferase complex from yeast. Biochim Biophys Acta, 1999. 1426(2): p. 259-73.
87. Abeijon, C. and C.B. Hirschberg, Topography of glycosylation reactions in the endoplasmic reticulum. Trends Biochem Sci, 1992. 17(1): p. 32-6.
88. Kornfeld, R. and S. Kornfeld, Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem, 1985. 54: p. 631-64.
89. Muramatsu, T., Essential roles of carbohydrate signals in development, immune response and tissue functions, as revealed by gene targeting. J Biochem, 2000. 127(2): p. 171-6.
90. Unligil, U.M. and J.M. Rini, Glycosyltransferase structure and mechanism. Curr Opin Struct Biol, 2000. 10(5): p. 510-7.
91. Dell, A. and H.R. Morris, Glycoprotein structure determination by mass spectrometry. Science, 2001. 291(5512): p. 2351-6.
92. Dwek, R.A., et al., Analysis of glycoprotein-associated oligosaccharides. Annu Rev Biochem, 1993. 62: p. 65-100.
93. Rudd, P.M. and R.A. Dwek, Rapid, sensitive sequencing of oligosaccharides from glycoproteins. Curr Opin Biotechnol, 1997. 8(4): p. 488-97.
94. Purohit, S., et al., Mutants of human choriogonadotropin lacking N-glycosyl chains in the alpha-subunit. 1. Mechanism for the differential action of the N-linked carbohydrates. Biochemistry, 1997. 36(40): p. 12355-63.
95. Wittwer, A.J. and S.C. Howard, Glycosylation at Asn-184 inhibits the conversion of single-chain to two-chain tissue-type plasminogen activator by plasmin. Biochemistry, 1990. 29(17): p. 4175-80.
96. Wormald, M.R. and R.A. Dwek, Glycoproteins: glycan presentation and protein-fold stability. Structure, 1999. 7(7): p. R155-60.
97. Wyss, D.F., et al., Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science, 1995. 269(5228): p. 1273-8.
98. Dwir, O., G.S. Kansas, and R. Alon, Cytoplasmic anchorage of L-selectin controls leukocyte capture and rolling by increasing the mechanical stability of the selectin tether. J Cell Biol, 2001. 155(1): p. 145-56.
99. Hemmerich, S. and S.D. Rosen, Carbohydrate sulfotransferases in lymphocyte homing. Glycobiology, 2000. 10(9): p. 849-56.
100. Epperson, T.K., et al., Noncovalent association of P-selectin glycoprotein ligand-1 and minimal determinants for binding to P-selectin. J Biol Chem, 2000. 275(11): p. 7839-53.
101. Weis, W.I., M.E. Taylor, and K. Drickamer, The C-type lectin superfamily in the immune system. Immunol Rev, 1998. 163: p. 19-34.
102. Tretter, V., et al., Fucose alpha 1,3-linked to the core region of glycoprotein N-glycans creates an important epitope for IgE from honeybee venom allergic individuals. Int Arch Allergy Immunol, 1993. 102(3): p. 259-66.
103. Greenwell, P., Blood group antigens: molecules seeking a function? Glycoconj J, 1997. 14(2): p. 159-73.
104. Tozawa, R., et al., Asialoglycoprotein receptor deficiency in mice lacking the major receptor subunit. Its obligate requirement for the stable expression of oligomeric receptor. J Biol Chem, 2001. 276(16): p. 12624-8.
105. Spiess, M., The asialoglycoprotein receptor: a model for endocytic transport receptors. Biochemistry, 1990. 29(43): p. 10009-18.
106. Lee, S.J., et al., Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science, 2002. 295(5561): p. 1898-901.
107. Lowe, G. and G.H. Gold, Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature, 1993. 366(6452): p. 283-6.
108. Takeda, S., et al., Crystal structures of VAP1 reveal ADAMs' MDC domain architecture and its unique C-shaped scaffold. Embo J, 2006. 25(11): p. 2388-96.
109. Ouyang, C. and C.M. Teng, Fibrinogenolytic enzymes of Trimeresurus mucrosquamatus venom. Biochim Biophys Acta, 1976. 420(2): p. 298-308.
110. Ito, M., et al., Complete amino acid sequence of kaouthiagin, a novel cobra venom metalloproteinase with two disintegrin-like sequences. Biochemistry, 2001. 40(14): p. 4503-11.
111. Dell, A., et al., FAB-MS and ES-MS of glycoproteins. Glycobiology: a practical approach., ed. F. M. and K. A. 1993.
112. Sanchez, E.F., et al., Structural and functional characterization of a P-III metalloproteinase, leucurolysin-B, from Bothrops leucurus venom. Arch Biochem Biophys, 2007. 468(2): p. 193-204.
113. Escalante, T., et al., Novel insights into capillary vessel basement membrane damage by snake venom hemorrhagic metalloproteinases: a biochemical and immunohistochemical study. Arch Biochem Biophys, 2006. 455(2): p. 144-53.
114. Stocker, K.F., Composition of snake venoms. Medical Use of Snake Venom Proteins., ed. K.F. Stocker. 1990. 33-56.
115. Warrell, D.A., Geographical and intraspecies variation in the clinical manifestations of envenoming by snakes. Venomous Snakes. Ecology, Evolution and Snakebite., ed. R.S. Thore, Wuster, W., Malhotra, A. 1997. 189-203.
116. Mukherjee, A.K. and C.R. Maity, Biochemical composition, lethality and pathophysiology of venom from two cobras-- Naja naja and N. kaouthia. Comp Biochem Physiol B Biochem Mol Biol, 2002. 131(2): p. 125-32.
117. Tsai, I.H., et al., Differential expression and geographic variation of the venom phospholipases A2 of Calloselasma rhodostoma and Trimeresurus mucrosquamatus. Arch Biochem Biophys, 2001. 387(2): p. 257-64.
118. Chijiwa, T., et al., Regional evolution of venom-gland phospholipase A2 isoenzymes of Trimeresurus flavoviridis snakes in the southwestern islands of Japan. Biochem J, 2000. 347(Pt 2): p. 491-9.
119. Chuman, Y., et al., Regional and accelerated molecular evolution in group I snake venom gland phospholipase A2 isozymes. Toxicon, 2000. 38(3): p. 449-62.
120. Mukherjee, A.K. and C.R. Maity, The composition of Naja naja venom samples from three districts of West Bengal, India. Comp Biochem Physiol A Mol Integr Physiol, 1998. 119(2): p. 621-7.
121. Wei, J.F., et al., Alpha-neurotoxins of Naja atra and Naja kaouthia snakes in different regions. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 2003. 35(8): p. 683-8.
122. Organization, W.H., Progress in characterization of venoms and standardization of antivenom. 1981. 1-44.