簡易檢索 / 詳目顯示

研究生: 許俊智
Hsu, Chun-Chih
論文名稱: 利用遞歸神經網路於無線充電電池管理
The Management of Battery for Wireless Charging Using Recurrent Neural Network
指導教授: 陳建祥
Chen, Jian-Shiang
口試委員: 葉廷仁
Yeh, Ting-Jen
林明璋
Lin, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 60
中文關鍵詞: 遞迴神經網路無線充電推挽式轉換器
外文關鍵詞: Recurrent neural network, Wireless charge, Push-pull converter
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用遞迴歸類神經網路實現無線充電電池管理。
    隨著電動車科技的發展,使得鉛酸電池與鋰電池廣泛的使用與電動車產業中,顯現出充電電池管理的重要性。本論文將發展鉛酸電池與鋰電池充電管理系統,以電池製造商的資料規格與兩段定電壓-電流充電法建立充電系統模型,目的是為建立類神經網路訓練所需要資料庫,在充電管理系統將利用量測電池充電電壓與充電電流,並透過遞迴歸神經網路來估測電池的開路電壓與瞬時效率。
    本文除了建立鉛酸電池充電系統模型之外,還透過實驗來驗證遞迴類神經網路對電池充電狀態的估測,在微控制器上處理充電資訊以及演算充電策略找出最佳充電曲線,期望能有效地控制電池充電。


    In this paper, utilize the recurrent neural network to implement wireless charging management of battery.
    As the development of electric vehicle technology lead to lead-acid battery and lithium battery are used widely in electric vehicle industry. Obviously it is important for battery charging management. This paper will develop a lead-acid battery charging management system. Establish a charging system model based on the battery manufacturer's data specifications and a two-stage constant voltage-current charging method. The purpose is to establish a database for the neural network training needs in charge management. The system will measure the battery charging voltage and current and estimate the open circuit voltage and instantaneous efficiency of the battery by recurrent neural network.
    In addition to establishing a lead-acid battery charging system model, this paper observes whether the state of battery charging can be estimated by using the recurrent neural network. It is expected to do the charging information and calculating charging strategy to find the optimized charging curve on the microcontroller. Expect to effectively control battery charging.

    致謝詞 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻回顧 2 1.3本文架構 5 第二章 問題描述 6 2.1 遞迴神經網路之介紹[33] 6 2.2 電池充電法介紹[24] 10 第三章 實施方法 13 3.1建立鉛酸電池充電系統模型 13 3.2模型建立-LSTM類神經網路 16 3.3 充電電路架構[27] 20 3.4推挽式轉換電路 23 3.5結語 26 第四章 實驗系統架構 27 4.1 實驗系統架構 27 4.2 無線充電控制系統架構 31 4.3模擬環境 35 4.4結語 37 第五章 實驗結果 38 5.1電池充電電路模擬與設計 38 5.2實驗一 類神經網路估測鉛酸電池狀態 41 5.3實驗二 驗證遞迴神經網路於實際電池狀態之預測 42 5.4實驗三 利用遞迴神經網路系統模型對鉛酸電池進行無線充電 45 5.4實驗四 無線充電於鋰電池實驗 50 5-5結語 55 第六章 本文貢獻與未來發展建議 56 6-1本文貢獻 56 6-2 未來發展與建議 56 參考文獻 57

    [1] K.I. Funahashi, “On the Approximate Realization of Continuous
    Mappings by Neural Networks,” Neural Networks, vol.2, pp. 183-192, 1989.
    [2] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
    computation, vol. 9, no.8, pp. 1735–1780, 1997.
    [3] A.K. Jain and J. “Mao. Artificial neural networks: A tutorial,” IEEE Computer,
    vol. 29, no. 3, pp. 31-44, 1996.
    [4] W.S. McCulloch, “Pitts W .A logical calculus of the ideas immanent in nervous
    activity,” Bulletin of Mathematical Biophysics, vol. 52, no. 1/2, pp. 99-115, 1990.
    [5] J. J. Hopfield, “Neural networks and physical systems with emergent collective
    computational abilities,” Proceedings of the National Academy of Sciences of the
    USA, vol. 79, no. 8, pp. 2554-2558, April 1982.
    [6] D.O. Hebb, The Organization of Behavior, New York: Wiley & Sons. 1949.
    [7] D.E Rumelhart, G.E. Hinton and R.J. Williams, “Learning representations by
    Back-propagating errors,’’ Nature 323, pp. 533-536, October 1986.
    [8] L.B. Almeida, “A learning rule for asynchronous perceptrons with feedback in a
    combinatorial environment,” Proceedings of the IEEE First International
    conference on Neural Networks, pp. 609-618, 1987.
    [9] S. Chen, C. Kang, Z. Zhang, H. Zhu, “A method for SOC estimation for lead-acid
    battery based on multi-model adaptive Extended Kalman Filtering estimation”,
    IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics
    Society, pp. 18-24, 2016.
    [10] F. Husnayain, A. R. Utomo, P. S. Priambodo, ‘‘State of charge estimation for a
    lead-acid battery using backpropagation neural network method,’’ IEEE International Conference on Electrical Engineering and Computer Science(ICEECS), pp. 274-278, 2014.
    [11] J.C. Alvarez Anton, P.J. Garcia Nieto, C. Blanco Viejo, J.A. VilanVilan, ‘‘Support vector machines used to estimate the battery state of charge,’’ IEEE Transaction on Power Electronics, vol. 28, no. 12, pp. 5919-5926, 2013.
    [12] D. Andre, C. Appel, T. Soczka-Guth, D.U. Sauer, ‘‘Advanced
    Mathematical Methods of SOC and SOH estimation for lithium-ion batteries,’’ Journal of Power Sources, vol. 224, pp.20-27, 2013.
    [13] R. Feng, S. Zhao, X. Lu, ‘‘On-line estimation of Dynamic State-of-Charge for lead acid battery based on fuzzy logic,’’ 2nd International Conference on Measurement Information and Control, pp. 447-451, Aug 2013.
    [14] G. Capizzi, F. Bonanno, G.M. Tina, “Recurrent neural network-based modeling and simulation of lead-acid batteries charge-discharge,” IEEE Trans Energy Convers, vol.26, pp. 435-443, 2011.
    [15] R. Zhao, P. J. Kollmeyer, R.D. Lorenz, T. M. Jahns, “A compact unified methodology via a recurrent neural network for accurate modeling of lithium-ion battery voltage and state-of-charge, ” IEEE Transactions on Energy Conversion, pp. 5234-5241, November 2017.
    [16] G. Capizzi, F. Bonanno, and C. Napoli, “Recurrent neural network-based control strategy for battery energy storage in generation systems with intermittent renewable energy sources,’’ International Conference on Clean Electrical Power (ICCEP), pp. 336-340, 2011.
    [17] M. James, J. Grummett, M. Rowan, and J. Newman: “Application of Pulse Charging Techniques to Submarine Lead-Acid Batteries”, Journal of Power Sources, vol. 162, No. 2, pp. 878-883, 2006.

    [18] T. Ikeya, “Multi-step constant-current charging method for an electric vehicle nickel/metal hydride battery with high-energy efficiency and long cycle life”, Journal of Power Sources, vol.105, pp. 6-12, 2002.
    [19] D. Lee, S.Y. Park, “ Rapid charging strategy in the constant voltage mode for a high power Li-Ion battery”, IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4725-4731, 2013.
    [20] https://buildmedia.readthedocs.org/ micropython Data Sheet
    [21] https://www.allegromicro.com/ ACS712 Data Sheet
    [22] T. Chai, R.R. Draxler, ‘‘Root mean square error (RMSE) or mean absolute error
    (MAE)? - arguments against avoiding RMSE in the literature,’’ Geoscientific
    Model Development, vol. 7, pp. 1247-1250, 2014.
    [23] Y. Bengio, P. Simard and P. Frasconi, ‘‘Learning long-term dependencies with gradient descent is difficult,’’ IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157-166, 1994.
    [24] C. C. Hua, M. Y. Lin, ‘‘A study of charging control of lead-acid battery for electric vehicle,’’ Proceedings of the 2000 IEEE International Symposium on Industrial Electronics , vol. 1, pp. 135-140, 2000.
    [25] http://www.gs-battery.com.tw/ GS-battery PE12V7.2A Data Sheet
    [26] W. Peng, Accurate circuit model for predicting the performance of lead acid AGM batteries. Las Vegas : University of Nevada, August 2011.
    [27] A. S. Sedra, & K. C. Smith, Microelectronic circuits. New York: Holt, Rinehart and Winston, 1982.
    [28] M.S.H. Lipu, A. Hussain, M.H.M. Saad, A. Ayob, M.A. Hannan, ‘‘Improved recurrent NARX neural network model for state of charge estimation of lithium-ion battery using pso algorithm,’’ IEEE Symposium on Computer Applications & Industrial Electronics, pp. 354-359, 2018.
    [29] https://www.raspberrypi.org/ Raspberry pi Data Sheet
    [30] Paolucci, Jonathan D.; “Novel Current-Fed Boundary-Mode Parallel Resonant Push-Pull Converter,” MS thesis. California Polytechnic State University, San Luis Obispo, June 2009.
    [31] https://www.richtek.com/ 無線充電現況
    [32] http://www.xlsemi.com/ XL4016 Data Sheet
    [33] Tarik Rashid, Recurrent Neural Network Model. Paperback: Publisher: LAP LAMBERT Academic Publishing, March 4, 2013.
    [34]王亮凱,基於E類放大器的磁共振無線電力傳輸系統參數設計時限於自走車,國立清華大學動力機械工程學系碩士論文,中華民國一百零八年五月。

    QR CODE