簡易檢索 / 詳目顯示

研究生: 邱啟倫
Chiu, Chi-Lun
論文名稱: 薄L型均溫板性能研究
Tests on a Thin L-Type Vapor Chamber
指導教授: 王訓忠
Wong, Shwin-Chung
口試委員: 許文震
簡國祥
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 82
中文關鍵詞: 薄型均溫板均溫板L型
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對一L型均溫板(vapor chamber)進行不同設計參數之性能測試,此L型均溫板利用平行溝槽取代上板毛細結構,可降低蒸氣腔厚度,同時也具有支撐的功能。本研究分成兩部分,第一部分為組裝式均溫板,以可重複使用的O環來進行組裝,目的在於找出適當的溝槽尺寸以及毛細結構的組成及厚度,做為第二部分針對採擴散接合密封的薄型均溫板的實驗依據;第一部分結果顯示水冷溫度為40℃時,可達較佳性能,熱傳極限約50W,均溫板熱阻值約0.08K/W,但冷凝區後端呈現積水現象。第二部分為永久性擴散接合密封的薄型均溫板,結果顯示冷凝區因蒸汽通道甚薄而嚴重積水,使本薄型均溫板在單熱源及雙熱源加熱下的均溫性及熱傳極限均不佳。


    摘要……………………………………………………………………….i 目錄...…..….……………………………………………………………..ii 圖表目錄…..…………….………………………………………………iv 第一章 緒論……………………………………………………………1 1.1 研究背景……………………………………………………....1 1.2 研究動機及目的………………………………………………2 第二章 基本理論與文獻回顧…………………………………………5 2.1 均溫板的工作原理……………………………………………5 2.2 文獻回顧……………………………………………………....7 2.2.1 均溫板之優點……………………………..……………7 2.2.2 蒸發與沸騰特性………………………………………..9 2.2.3 蒸汽腔之蒸發熱阻……………………………………..9 2.2.4 毛細結構對性能響 ..…....…..……………..…………10 2.2.5 冷凝端蒸汽通道的影響………………………………12 2.2.6 多熱源…………………………………………………13 2.2.7 其他新型蒸汽腔…………………………………....…14 第三章 實驗方法……………………………………………………..29 3.1 簡介…………………………………………………………..29 3.2 實驗配置與步驟……………………………………………..29 3.2.1 L形均溫板測試…………………………….………….29 3.2.2 實驗設備……………………………………..………...33 3.2.3 實驗程序……………………………………..………...35 3.2.4 改變實驗參數………………………………………...…37 第四章 組裝式均溫板測試…………………………………………..50 4.1 影響性能之因素探討……………………………….………..50 4.1.1注水量多寡………………………………………..……..50 4.1.2冷卻水溫度………………………………………………51 4.2組裝式均溫板結果討論………………………………………51 4.3 L型組裝式均溫板與方形均溫板的性能差異……………….52 第五章 薄L型均溫板測試…………………………………………..57 5.1影響性能之因素探討…………………………………………57 5.1.1冷凝端溝槽加寬…………………………………………57 5.1.2減短回水路徑……………………………………………58 5.1.3冷凝區上下位置的影響…………………………………59 5.1.4水量多寡的影響…………………………………………60 5.1.5冷卻水溫的影響…………………………………………60 5.1.6冷凝端加開側向溝槽的影響……………………………61 5.1.7毛細層氧化程度的影響…………………………………62 5.1.8單熱源與雙熱源的特性…………………………………62 5.2薄L型均溫板結果討論………………………………………63 第六章 結論與未來方向……………………………………………77 6.1結論……………………………………………………………77 6.1.1 組裝式L形均溫板……………………………………77 6.1.2 薄L型均溫板…………………………………………78 6.2未來方向………………………………………………………79 參考文獻……………………………………………………………… 80

    [1] S.-C. Wong, K.-C. Hsieh, J.-D. Wu, Wu.-L. Han, A novel vapor chamber and its performance, Int. J. Heat Mass Transfer 53 (2010) 2377-2384.
    [2] M. Mochizuki, Y. Saito, F. Kiyooka, T. Nguyen, The way we were and are going on cooling high power processors in the industries, The Seventh International Symposium in Transport Phenomena, Toyama, Japan, September 4-8, 2006.
    [3] S.W. Chi, Heat Pipe Theory and Practice, McGraw-Hill, 1976.
    [4] K. Grubb, CFD modeling of a Therma-Base heat sink, 8th International FLOTHERM User Conference, 1999.
    [5] S.-C. Wong, S.-F. Huang, K.-C. Hsieh, Performance tests on a novel vapor chamber, Appl. Therm. Eng. 31 (2011) 1757-1762.
    [6] J.-Y. Chang, R.S. Prasher, S. Prstic, P. Cheng, H.B. Ma, Evaporative thermal performance of vapor chambers under nonuniform heating conditions, ASME J. Heat Transfer 130 (2008) 121501. (9 pp.)
    [7] C. Li, G.P. Peterson, Evaporation boiling in thin capillary wicks (II)–effects of volumetric porosity and mesh size, ASME J. Heat Transfer 128 (2006) 1320-1328.
    [8] R. Boukhanouf, A. Haddad, M.T. North, C. Buffone, Experimental investigation of a flat plate heat pipe performance using IR thermal imaging, Appl. Therm. Eng. 26 (2006) 2148–2156.
    [9] J.-H. Liou, C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 1498-1506.
    [10] S.-C. Wong, J.-H. Liou, C.-W. Chang, Evaporation resistance measurement and visualization for sintered copper-powder evaporator in operating flat-plate heat pipes, submitted to Int. J. Heat Mass Transfer 53 (2010) 3792-3798.
    [11] M. Potash, P.C. Wayner, Evaporation from a two-dimensional extended meniscus, Int. J. Heat Mass Transfer 15 (1972) 1851-1863.
    [12] H. Wang, S. V. Garimella , J. Y. Murthy, Characteristics of an evaporating thin film in a microchannel, Int. J. Heat Mass Transfer 50 (2007) 3933–3942.
    [13] H.K. Dhavaleswarapu, S.V. Garimella, J.Y. Murthy, Microscale temperature measurements near the triple line of an evaporating thin liquid film, ASME J. Heat Transfer 131 (2009) 061501 (7 pp.).
    [14] A.J. Jiao, H.B. Ma, J.K. Critser, Evaporation heat transfer characteristics of a grooved heat pipe with micro-trapezoidal grooves, Int. J. Heat Mass Transfer 50 (2007) 2905-2911.
    [15] C. Li, G.P. Peterson, Y. Wang, Evaporation/boiling in thin capillary wicks (І)–wick thickness effect, ASME J. Heat Transfer 128 (2006) 1312-1319.
    [16] Y. Wang, G.P. Peterson, Investigation of a novel flat heat pipe, ASME J. Heat Transfer 127 (2005) 165-170.
    [17] U. Vadakkan, S.V. Garimella, J.Y. Murthy, Transport in flat heat pipes at high heat fluxes from multiple discrete sources, ASME J. Heat Transfer 126 (2004) 347-354.
    [18] F. Lefevre, M. Lallemand, Coupled thermal and hydrodynamic models of flat micro heat pipes for the cooling of multiple electronic components, Int. J. Heat Mass Transfer 49 (2006) 1375-1383.
    [19] R. Sonan, S. Harmand, J. Pelle, D. Leger, M. Fakes, Transient thermal and hydrodynamic model of flat heat pipe for the cooling of electronics components, Int. J. Heat Mass Transfer 51 (2008) 6006-6017.
    [20] K.-T. Lin, S.-C. Wong, Performance degradation of flattened heat pipes, Appl. Therm. Eng., 10.1016/j.applthermaleng.2012.06.001, 2012.
    [21] G.S. Hwang, Y. Nam, E. Fleming, P. Dussinger, Y.S. Ju, M. Kaviany, Multi-artery heat pipe spreader: experiment, Int. J. Heat Mass Transfer 53 (2010) 2662-2669.
    [22] X. Ji, J. Xu, A.M.Abanda, Q. Xue, A vapor chamber using extended condenser concept for ultra-high heat flux and large heater area, Int. J. Heat Mass Transfer, 10.1016/j.ijheatmasstransfer.2012.04.018.
    [23] S.-C. Wong, Y.-C. Lin, J.-H. Liou, Visualization and evaporation resistance measurement in heat pipes charged with water, methanol or acetone, Int. J. Therm. Sci. 52 (2012) 154-160.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE