研究生: |
克里斯 Chatterjee, Krishnendu |
---|---|
論文名稱: |
開發感應及其它應用之奈米材料 Development of Nanomaterial for sensing and other applications |
指導教授: |
陳培菱
Chen, Peilin 曾繁根 Tseng, Fan-Gang |
口試委員: |
薛景中
Shyue, Jing-Jong 張允崇 Chang, Yun-Chorng 陳祺 Chen, Chi |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 93 |
中文關鍵詞: | 金納米簇 、基於紙的測定 、藥物檢測 、原代神經元培養 、導電聚合物 、鈣成像 |
外文關鍵詞: | Gold nanocluster, Paper-based assay, Drug detection, Primary neuron culture, Conducting Polymer, Calcium Imaging |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉著工程技術大量的應用於外科手術、診斷及調配藥物,生物醫學工程填補了工程科技與常規醫學間的鴻溝。目前醫學治療的成效在於迅速準確地偵測疾病,這不僅只是依據疾病症狀或流行病學的調查,同時也須經由進行許多有系統的體外、生物體外及體內的研究方法。納米科技的發展正是為了當前所遇到的研究瓶頸來提供解決方案,其中包括成像劑、螢光感應器、可用於體內之生物相容性裝置等等。為了推動合成奈米材料於現實生活中的應用,並且專注疾病監測及緩解症狀,目前正廣泛對這些奈米材料的應用能力進行研究。
以胎牛血清蛋白質包覆的奈米金屬團簇物已被廣泛用於顯像劑以及螢光感應器,與有機層包覆的奈米金粒子比較,蛋白質複雜的3D結構,可以讓金奈米粒子承受更寬的pH值變化。藉由濃度依賴螢光消光的特性,我們利用胎牛血清蛋白質包覆的奈米金粒子(BSA-AuNC)可以成功檢測藥物利福平的濃度範圍為0.5-823微克/毫升。 若將 BSA-AuNC固定在蠟紙平台上,可用於平時監控尿液中的利福平 的含量。蠟紙平台測 定法可以進一步藉由修飾BSA-AuNC上的BSA來檢測其它特有的待測物並為監測其疾 病提供有用的工具。
經由疾病監測技術的角度,我們希望進一步開發適合於體內植入的材料。由於神經功能失調,導致其影響並衰弱全球約6%總體人群的正常腦部功能。開發可體內植入的腦電極器是非常重要的,但是需要綜合研究其在大腦各個區域經由刺激所造成的影響。因此開發具有高靈敏度,低阻抗,特定電荷注入能力和長期穩定性的神經介面是必要的,基於此,我們已經利用甲苯磺酸鹽摻雜的聚二氧乙基噻吩(PEDOT)材料成功培養新生大鼠或小鼠腦中初代海馬迴神經細胞。雖然沒有進行直接電刺激的研究,但是PEDOT:甲苯磺酸鹽在神經細胞的存活率高於其他PEDOT複合材料的優點,證明了這種材料可以為開發神經假體和植入式裝置提供一種選擇,並可應用於體內疾病模型之研究。
Biomedical engineering has bridged the gap between technology and conventional medicine by application of engineering skills in surgical, diagnostic and concoction based medicine. The effectiveness of medical treatment at present lies in the rapid and accurate detection of a disease; not only by its symptoms or epidemiology but by many systematic approaches in vitro, ex-vivo and even in-vivo. Nanotechnology is providing solutions to the current bottlenecks in research applications in the field of imaging agents, fluorescence sensors, biocompatible devices for in vivo applications, etc. In order to push the as synthesized nanomaterials for real life applications focusing on applications based on disease monitoring and alleviation of symptoms, a broad study was conducted to study their competence.
BSA-stabilized metal nanoclusters have been widely used as imaging agents as well as fluorescence sensors. Generally, the complex 3D structures of protein template are known to withstand a wider range of pH changes compared to organic-monolayer-protected Au NCs. The concentration dependent fluorescence quenching of BSA-Au NCs in the presence of rifampicin allows for the sensitive detection of rifampicin in a range from 0.5-823 µg/mL. The BSA-Au NCs were immobilized on a wax-printed paper-based platform and used to conduct real-time monitoring of rifampicin in urine. The paper-based assay can be further used for the detection of other specific analytes via surface modification of the BSA in BSA-Au NCs and offers a useful tool for monitoring other diseases.
Moving on from disease monitoring techniques, we hoped to further develop material suitable for in vivo implantations. As neurological disorders affect and debilitate the normal brain function in about 6% of the total population globally. The possibilities for brain electrodes implants are endless but would need comprehensive study upon the effects of stimulation in various regions of the brain, requiring development of neural interfaces capable of high recording sensitivity, low impedance, specific charge injection capacity and long-term stability. So, in another study, tosylate doped PEDOT materials have been utilized to grow primary cultured hippocampal neurons directly from neonatal rat/mice brain, obtained via newborn litters of C57BL/6 mice and SD rats maintained in our lab. Though direct electro-stimulation studies were not performed, the advantages PEDOT: tosylate possess over other PEDOT composites proves this material could provide an option for developing neural prosthetics and implantable devices for in vivo disease model studies.
1. Murray, C. B.; Kagan, C. R.; Bawendi, M. G., SYNTHESIS AND CHARACTERIZATION OF MONODISPERSE NANOCRYSTALS AND CLOSE-PACKED NANOCRYSTAL ASSEMBLIES. Annual Review of Materials Science 2000, 30 (1), 545-610.
2. Cui H, F. Y. R. W., Zeng T, Lv H,Pan Y, Strategies of Large Scale Synthesis of Monodisperse Nanoparticles Recent Patents on Nanotechnology 2009, 3, 10.
3. Winquist, F.; Spetz, A.; Armgarth, M.; Lundström, I.; Danielsson, B., Biosensors based on ammonia sensitive metal-oxide-semiconductor structures. Sensors and Actuators 1985, 8 (2), 91-100.
4. Danielsson, B.; Mosbach, K.; Winquist, F.; Lundström, I., Biosensors based on thermistors and semiconductors and their bioanalytical applications. Sensors and Actuators 1988, 13 (2), 139-146.
5. Lin, Y.; Lu, F.; Tu, Y.; Ren, Z., Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles. Nano Letters 2004, 4 (2), 191-195.
6. Rocha-Santos, T. A. P., Sensors and biosensors based on magnetic nanoparticles. TrAC Trends in Analytical Chemistry 2014, 62, 28-36.
7. Mao, X.; Ma, Y.; Zhang, A.; Zhang, L.; Zeng, L.; Liu, G., Disposable Nucleic Acid Biosensors Based on Gold Nanoparticle Probes and Lateral Flow Strip. Analytical Chemistry 2009, 81 (4), 1660-1668.
8. Huang, K.-J.; Liu, Y.-J.; Wang, H.-B.; Wang, Y.-Y., A sensitive electrochemical DNA biosensor based on silver nanoparticles-polydopamine@graphene composite. Electrochimica Acta 2014, 118, 130-137.
9. Park, K.-S.; Tae, J.; Choi, B.; Kim, Y.-S.; Moon, C.; Kim, S.-H.; Lee, H.-S.; Kim, J.; Kim, J.; Park, J.; Lee, J.-H.; Lee, J. E.; Joh, J.-W.; Kim, S., Characterization, in vitro cytotoxicity assessment, and in vivo visualization of multimodal, RITC-labeled, silica-coated magnetic nanoparticles for labeling human cord blood–derived mesenchymal stem cells. Nanomedicine: Nanotechnology, Biology and Medicine 2010, 6 (2), 263-276.
10. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307 (5709), 538.
11. Xie, J.; Zheng, Y.; Ying, J. Y., Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. Journal of the American Chemical Society 2009, 131 (3), 888-889.
12. Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S. Y.; Sood, A. K.; Hua, S., Advances and Challenges of Liposome Assisted Drug Delivery. Frontiers in Pharmacology 2015, 6 (286).
13. Kumari, A.; Yadav, S. K.; Yadav, S. C., Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces 2010, 75 (1), 1-18.
14. Bharti, C.; Nagaich, U.; Pal, A.; Gulati, N., Mesoporous silica nanoparticles in target drug delivery system: A review. International Journal of Pharmaceutical Investigation 2015, 5 (3), 124-133.
15. Hwang, J.; Lee, E.; Kim, J.; Seo, Y.; Lee, K. H.; Hong, J. W.; Gilad, A. A.; Park, H.; Choi, J., Effective delivery of immunosuppressive drug molecules by silica coated iron oxide nanoparticles. Colloids and Surfaces B: Biointerfaces 2016, 142, 290-296.
16. D'Elia, N. L.; Mathieu, C.; Hoemann, C. D.; Laiuppa, J. A.; Santillan, G. E.; Messina, P. V., Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures. Nanoscale 2015, 7 (44), 18751-18762.
17. Yamashita, D.; Machigashira, M.; Miyamoto, M.; Takeuchi, H.; Noguchi, K.; Izumi, Y.; Ban, S., Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dental Materials Journal 2009, 28 (4), 461-470.
18. Corchero, J. L.; Villaverde, A., Biomedical applications of distally controlled magnetic nanoparticles. Trends in Biotechnology 2009, 27 (8), 468-476.
19. Guo, H.; Qian, H.; Idris, N. M.; Zhang, Y., Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer. Nanomedicine: Nanotechnology, Biology and Medicine 2010, 6 (3), 486-495.
20. Cellot, G.; Lagonegro, P.; Tarabella, G.; Scaini, D.; Fabbri, F.; Iannotta, S.; Prato, M.; Salviati, G.; Ballerini, L., PEDOT:PSS Interfaces Support the Development of Neuronal Synaptic Networks with Reduced Neuroglia Response In vitro. Frontiers in Neuroscience 2015, 9, 521.
21. Crubzy, E.; Murail, P.; Girard, L.; Bernadou, J.-P., False teeth of the Roman world. Nature 1998, 391 (6662), 29-29.
22. Charnley, J., Anchorage of the femoral head prosthesis to the shaft of the femur. J Bone Joint Surg Br. 1960.
23. Ghasemi-Mobarakeh, L.; Prabhakaran, M. P.; Morshed, M.; Nasr-Esfahani, M. H.; Baharvand, H.; Kiani, S.; Al-Deyab, S. S.; Ramakrishna, S., Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. Journal of tissue engineering and regenerative medicine 2011, 5 (4), e17-35.
24. Bonanno, L. M.; Segal, E., Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery. Nanomedicine 2011, 6 (10), 1755-1770.
25. Kou, P. M.; Babensee, J. E., Macrophage and dendritic cell phenotypic diversity in the context of biomaterials. Journal of Biomedical Materials Research Part A 2011, 96A (1), 239-260.
26. Balint, R.; Cassidy, N. J.; Cartmell, S. H., Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta biomaterialia 2014, 10 (6), 2341-2353.
27. Svennersten, K.; Larsson, K. C.; Berggren, M.; Richter-Dahlfors, A., Organic bioelectronics in nanomedicine. Biochimica et biophysica acta 2011, 1810 (3), 276-85.
28. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). Journal of the Chemical Society, Chemical Communications 1977, (16), 578-580.
29. GUO BaoLin, M. P. X., Synthetic biodegradable functional polymers for tissue engineering:a brief review. SCIENCE CHINA Chemistry 2014, 57 (4), 490-500.
30. Monaco, A. M.; Giugliano, M., Carbon-based smart nanomaterials in biomedicine and neuroengineering. Beilstein journal of nanotechnology 2014, 5, 1849-63.
31. Eriberto Bressan, L. F., Chiara Gardin, Luca Sbricoli , Luca Gobbato , Francesco Saverio Ludovichetti ,Ilaria Tocco , Amedeo Carraro 4 , Adriano Piattelli and Barbara Zavan, Graphene based scaffolds effects on stem cells commitment.pdf>. Journal of Translational Medicine 2014.
32. Yang, K.; Feng, L. Z.; Shi, X. Z.; Liu, Z., Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews 2013, 42 (2), 530-547.
33. Jacobson, K. B., Biosensors and other medical and environmental probes. Journal Name: Oak Ridge National Laboratory Review; Journal Volume: 29; Journal Issue: 3-4; Other Information: PBD: 1996 1996, Medium: X; Size: pp. 52-66.
34. Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T., Quantum dots versus organic dyes as fluorescent labels. Nat Meth 2008, 5 (9), 763-775.
35. Gerasov, А.; Shandura, M.; Kovtun, Y.; Losytskyy, M.; Negrutska, V.; Dubey, I., Fluorescent labeling of proteins with amine-specific 1,3,2-(2H)-dioxaborine polymethine dye. Analytical Biochemistry 2012, 420 (2), 115-120.
36. Chiang, Y.-H.; Wu, Y.-J.; Lu, Y.-T.; Chen, K.-H.; Lin, T.-C.; Chen, Y.-K. H.; Li, D.-T.; Shi, F.-K.; Chen, C.-C.; Hsu, J.-L., Simple and Specific Dual-Wavelength Excitable Dye Staining for Glycoprotein Detection in Polyacrylamide Gels and Its Application in Glycoproteomics. Journal of Biomedicine and Biotechnology 2011, 2011, 8.
37. Niu, C.-G.; Liu, J.; Qin, P.-Z.; Zeng, G.-M.; Ruan, M.; He, H., A novel bifunctional europium chelate applied in quantitative determination of human immunoglobin G using time-resolved fluoroimmunoassay. Analytical Biochemistry 2011, 409 (2), 244-248.
38. Zhao, Q.; Yu, M.; Shi, L.; Liu, S.; Li, C.; Shi, M.; Zhou, Z.; Huang, C.; Li, F., Cationic Iridium(III) Complexes with Tunable Emission Color as Phosphorescent Dyes for Live Cell Imaging. Organometallics 2010, 29 (5), 1085-1091.
39. Li, D.; He, M.; Jiang, S. C., Detection of Infectious Adenoviruses in Environmental Waters by Fluorescence-Activated Cell Sorting Assay. Applied and Environmental Microbiology 2010, 76 (5), 1442-1448.
40. Zipper, H.; Brunner, H.; Bernhagen, J.; Vitzthum, F., Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Research 2004, 32 (12), e103-e103.
41. Law, W.-C.; Yong, K.-T.; Roy, I.; Xu, G.; Ding, H.; Bergey, E. J.; Zeng, H.; Prasad, P. N., Optically and Magnetically Doped Organically Modified Silica Nanoparticles as Efficient Magnetically Guided Biomarkers for Two-Photon Imaging of Live Cancer Cells†. The Journal of Physical Chemistry C 2008, 112 (21), 7972-7977.
42. Chatterjee, K.; Sarkar, S.; Jagajjanani Rao, K.; Paria, S., Core/shell nanoparticles in biomedical applications. Advances in Colloid and Interface Science 2014, 209, 8-39.
43. Chen, S.; Wang, L.; Duce, S. L.; Brown, S.; Lee, S.; Melzer, A.; Cuschieri, S. A.; André, P., Engineered Biocompatible Nanoparticles for in Vivo Imaging Applications. Journal of the American Chemical Society 2010, 132 (42), 15022-15029.
44. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005, 4 (6), 435-446.
45. Hoshino, A.; Manabe, N.; Fujioka, K.; Suzuki, K.; Yasuhara, M.; Yamamoto, K., Use of fluorescent quantum dot bioconjugates for cellular imaging of immune cells, cell organelle labeling, and nanomedicine: surface modification regulates biological function, including cytotoxicity. J Artif Organs 2007, 10 (3), 149-157.
46. Skotland, T.; Iversen, T.-G.; Sandvig, K., New metal-based nanoparticles for intravenous use: requirements for clinical success with focus on medical imaging. Nanomedicine: Nanotechnology, Biology and Medicine 2010, 6 (6), 730-737.
47. Buzea, C.; Pacheco, I.; Robbie, K., Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2 (4), MR17-MR71.
48. Lin, C.-A. J.; Lee, C.-H.; Hsieh, J.-T.; Wang, H.-H.; Li, J. K.; Shen, J.-L.; Chan, W.-H.; Yeh, H.-I.; Chang, W. H., Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges. Journal of Medical and Biological Engineering 2009, 29 (6), 276-283.
49. Yu, J.; Patel, S. A.; Dickson, R. M., In Vitro and Intracellular Production of Peptide-Encapsulated Fluorescent Silver Nanoclusters. Angewandte Chemie International Edition 2007, 46 (12), 2028-2030.
50. Archana, R.; Sonali, S.; Deepthy, M.; Prasanth, R.; Habeeb, M.; Thalappil, P.; Shantikumar, N.; Manzoor, K., Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology 2010, 21 (5), 055103.
51. Habeeb Muhammed, M. A.; Verma, P. K.; Pal, S. K.; Retnakumari, A.; Koyakutty, M.; Nair, S.; Pradeep, T., Luminescent Quantum Clusters of Gold in Bulk by Albumin-Induced Core Etching of Nanoparticles: Metal Ion Sensing, Metal-Enhanced Luminescence, and Biolabeling. Chemistry – A European Journal 2010, 16 (33), 10103-10112.
52. Durgadas, C. V.; Sharma, C. P.; Sreenivasan, K., Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst 2011, 136 (5), 933-940.
53. Durgadas, C. V.; Sharma, C. P.; Sreenivasan, K., Fluorescent and superparamagnetic hybrid quantum clusters for magnetic separation and imaging of cancer cells from blood. Nanoscale 2011, 3 (11), 4780-4787.
54. Liu, C.-L.; Wu, H.-T.; Hsiao, Y.-H.; Lai, C.-W.; Shih, C.-W.; Peng, Y.-K.; Tang, K.-C.; Chang, H.-W.; Chien, Y.-C.; Hsiao, J.-K.; Cheng, J.-T.; Chou, P.-T., Insulin-Directed Synthesis of Fluorescent Gold Nanoclusters: Preservation of Insulin Bioactivity and Versatility in Cell Imaging. Angewandte Chemie International Edition 2011, 50 (31), 7056-7060.
55. Wang, Y.; Chen, J.; Irudayaraj, J., Nuclear Targeting Dynamics of Gold Nanoclusters for Enhanced Therapy of HER2+ Breast Cancer. ACS Nano 2011, 5 (12), 9718-9725.
56. Sun, C.; Yang, H.; Yuan, Y.; Tian, X.; Wang, L.; Guo, Y.; Xu, L.; Lei, J.; Gao, N.; Anderson, G. J.; Liang, X.-J.; Chen, C.; Zhao, Y.; Nie, G., Controlling Assembly of Paired Gold Clusters within Apoferritin Nanoreactor for in Vivo Kidney Targeting and Biomedical Imaging. Journal of the American Chemical Society 2011, 133 (22), 8617-8624.
57. Xavier Le, G.; Nicole, D.; Marc, S., Synthesis and characterization of human transferrin-stabilized gold nanoclusters. Nanotechnology 2011, 22 (27), 275103.
58. Lin, S.-Y.; Chen, N.-T.; Sum, S.-P.; Lo, L.-W.; Yang, C.-S., Ligand exchanged photoluminescentgold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging. Chemical Communications 2008, (39), 4762-4764.
59. Lin, C.-A. J.; Yang, T.-Y.; Lee, C.-H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J.-L.; Wang, H.-H.; Yeh, H.-I.; Parak, W. J.; Chang, W. H., Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. ACS Nano 2009, 3 (2), 395-401.
60. Wu, X.; He, X.; Wang, K.; Xie, C.; Zhou, B.; Qing, Z., Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. Nanoscale 2010, 2 (10), 2244-2249.
61. Zhou, C.; Long, M.; Qin, Y.; Sun, X.; Zheng, J., Luminescent Gold Nanoparticles with Efficient Renal Clearance. Angewandte Chemie International Edition 2011, 50 (14), 3168-3172.
62. Schaaff, T. G.; Shafigullin, M. N.; Khoury, J. T.; Vezmar, I.; Whetten, R. L.; Cullen, W. G.; First, P. N.; Gutiérrez-Wing, C.; Ascensio, J.; Jose-Yacamán, M. J., Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra. The Journal of Physical Chemistry B 1997, 101 (40), 7885-7891.
63. Adhikari, B.; Banerjee, A., Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclusters and HgII Sensing. Chemistry of Materials 2010, 22 (15), 4364-4371.
64. Duan, H.; Nie, S., Etching Colloidal Gold Nanocrystals with Hyperbranched and Multivalent Polymers: A New Route to Fluorescent and Water-Soluble Atomic Clusters. Journal of the American Chemical Society 2007, 129 (9), 2412-2413.
65. Santiago González, B.; Rodríguez, M. J.; Blanco, C.; Rivas, J.; López-Quintela, M. A.; Martinho, J. M. G., One Step Synthesis of the Smallest Photoluminescent and Paramagnetic PVP-Protected Gold Atomic Clusters. Nano Letters 2010, 10 (10), 4217-4221.
66. Zheng, J.; Petty, J. T.; Dickson, R. M., High Quantum Yield Blue Emission from Water-Soluble Au8 Nanodots. Journal of the American Chemical Society 2003, 125 (26), 7780-7781.
67. Richards, C. I.; Choi, S.; Hsiang, J.-C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y.-L.; Dickson, R. M., Oligonucleotide-Stabilized Ag Nanocluster Fluorophores. Journal of the American Chemical Society 2008, 130 (15), 5038-5039.
68. Zhou, R.; Shi, M.; Chen, X.; Wang, M.; Chen, H., Atomically Monodispersed and Fluorescent Sub-Nanometer Gold Clusters Created by Biomolecule-Assisted Etching of Nanometer-Sized Gold Particles and Rods. Chemistry – A European Journal 2009, 15 (19), 4944-4951.
69. Wei, H.; Wang, Z.; Zhang, J.; House, S.; Gao, Y.-G.; Yang, L.; Robinson, H.; Tan, L. H.; Xing, H.; Hou, C.; Robertson, I. M.; Zuo, J.-M.; Lu, Y., Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nat Nano 2011, 6 (2), 93-97.
70. Mayavan, S.; Dutta, N. K.; Choudhury, N. R.; Kim, M.; Elvin, C. M.; Hill, A. J., Self-organization, interfacial interaction and photophysical properties of gold nanoparticle complexes derived from resilin-mimetic fluorescent protein rec1-resilin. Biomaterials 2011, 32 (11), 2786-2796.
71. Shichibu, Y.; Negishi, Y.; Tsunoyama, H.; Kanehara, M.; Teranishi, T.; Tsukuda, T., Extremely High Stability of Glutathionate-Protected Au25 Clusters Against Core Etching. Small 2007, 3 (5), 835-839.
72. Garcia, A. R.; Rahn, I.; Johnson, S.; Patel, R.; Guo, J.; Orbulescu, J.; Micic, M.; Whyte, J. D.; Blackwelder, P.; Leblanc, R. M., Human insulin fibril-assisted synthesis of fluorescent gold nanoclusters in alkaline media under physiological temperature. Colloids and Surfaces B: Biointerfaces 2013, 105, 167-172.
73. Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X., Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing. Analytical Chemistry 2011, 83 (4), 1193-1196.
74. Chen, Y.; Wang, Y.; Wang, C.; Li, W.; Zhou, H.; Jiao, H.; Lin, Q.; Yu, C., Papain-directed synthesis of luminescent gold nanoclusters and the sensitive detection of Cu2+. Journal of Colloid and Interface Science 2013, 396, 63-68.
75. Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L., Gold-Nanocluster-Based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water. Advanced Functional Materials 2010, 20 (6), 951-956.
76. Chen, W.-Y.; Lan, G.-Y.; Chang, H.-T., Use of Fluorescent DNA-Templated Gold/Silver Nanoclusters for the Detection of Sulfide Ions. Analytical Chemistry 2011, 83 (24), 9450-9455.
77. Lin, Z.; Luo, F.; Dong, T.; Zheng, L.; Wang, Y.; Chi, Y.; Chen, G., Recyclable fluorescent gold nanocluster membrane for visual sensing of copper(ii) ion in aqueous solution. Analyst 2012, 137 (10), 2394-2399.
78. Roy, S.; Palui, G.; Banerjee, A., The as-prepared gold cluster-based fluorescent sensor for the selective detection of AsIII ions in aqueous solution. Nanoscale 2012, 4 (8), 2734-2740.
79. Chen, Z.; Qian, S.; Chen, X.; Gao, W.; Lin, Y., Protein-templated gold nanoclusters as fluorescence probes for the detection of methotrexate. Analyst 2012, 137 (18), 4356-4361.
80. Xia, X.; Long, Y.; Wang, J., Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose. Analytica Chimica Acta 2013, 772, 81-86.
81. Wong, J. Y.; Langer, R.; Ingber, D. E., Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proceedings of the National Academy of Sciences 1994, 91 (8), 3201-3204.
82. Dai, L., Intelligent Macromolecules for Smart Devices. Springer 2004, 41-80.
83. Nawara, K.; Romiszewski, J.; Kijewska, K.; Szczytko, J.; Twardowski, A.; Mazur, M.; Krysinski, P., Adsorption of Doxorubicin onto Citrate-Stabilized Magnetic Nanoparticles. Journal of Physical Chemistry C 2012, 116 (9), 5598-5609.
84. Pokki, J.; Ergeneman, O.; Sivaraman, K. M.; Oezkale, B.; Zeeshan, M. A.; Luehmann, T.; Nelson, B. J.; Pane, S., Electroplated porous polypyrrole nanostructures patterned by colloidal lithography for drug-delivery applications. Nanoscale 2012, 4 (10), 3083-3088.
85. Elizalde-Torres, J.; Hu, H. L.; Garcia-Valenzuela, A., NO2-induced optical absorbance changes in semiconductor polyaniline thin films. Sensors and Actuators B-Chemical 2004, 98 (2-3), 218-226.
86. Camilo Monge-Romero, I.; Fidel Suarez-Herrera, M., Electrocatalysis of the hydroquinone/benzoquinone redox couple at platinum electrodes covered by a thin film of poly(3,4-ethylenedioxythiophene). Synthetic Metals 2013, 175, 36-41.
87. Lei, J.; Ju, H., Nanotubes in biosensing. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology 2010, 2 (5), 496-509.
88. Lassalle, N.; Roget, A.; Livache, T.; Mailley, P.; Vieil, E., Electropolymerisable pyrrole-oligonucleotide: synthesis and analysis of ODN hybridisation by fluorescence and QCM. Talanta 2001, 55 (5), 993-1004.
89. Cen, L.; Neoh, K. G.; Kang, E. T., Surface functionalization of polypyrrole film with glucose oxidase and viologen. Biosensors & Bioelectronics 2003, 18 (4), 363-374.
90. Macagnano, A.; Zampetti, E.; Pantalei, S.; De Cesare, F.; Bearzotti, A.; Persaud, K. C., Nanofibrous PANI-based conductive polymers for trace gas analysis. Thin Solid Films 2011, 520 (3), 978-985.
91. Krzyczmonik, P.; Socha, E.; Skrzypek, S., Immobilization of glucose oxidase on modified electrodes with composite layers based on poly(3,4-ethylenedioxythiophene). Bioelectrochemistry 2015, 101, 8-13.
92. Li, Z. F.; Ruckenstein, E., Two liquid adsorptive entrapment of a pluronic polymer into the surface of polyaniline films. Journal of Colloid and Interface Science 2003, 264 (2), 370-377.
93. Jha, S. K.; Kanungo, M.; Nath, A.; D'Souza, S. F., Entrapment of live microbial cells in electropolymerized polyaniline and their use as urea biosensor. Biosensors and Bioelectronics 2009, 24 (8), 2637-2642.
94. Guimard, N. K.; Gomez, N.; Schmidt, C. E., Conducting polymers in biomedical engineering. Progress in Polymer Science 2007, 32 (8–9), 876-921.
95. Cen, L.; Neoh, K. G.; Kang, E. T., Surface functionalization of electrically conductive polypyrrole film with hyaluronic acid. Langmuir 2002, 18 (22), 8633-8640.
96. Esman, N.; Haviv, A.; Lellouche, J.-P., Magnetically responsive polypyrrole nanotubes using Ce(III)-stabilized maghemite nanoparticles. Nanotechnology 2011, 22 (28).
97. Tessier, D.; Dao, L. H.; Zhang, Z.; Martin, M. W.; Guidoin, R., Polymerization and surface analysis of electrically-conductive polypyrrole on surface-activated polyester fabrics for biomedical applications. Journal of Biomaterials Science-Polymer Edition 2000, 11 (1), 87-99.
98. Xu, J.; Yao, P.; Wang, Y.; He, F.; Wu, Y., Synthesis and characterization of HCl doped polyaniline grafted multi-walled carbon nanotubes core-shell nano-composite. Journal of Materials Science-Materials in Electronics 2009, 20 (6), 517-527.
99. Romyen, N.; Thongyai, S.; Praserthdam, P.; Sotzing, G. A., Enhancement of poly(3,4-ethylenedioxy thiophene)/poly(styrene sulfonate) properties by poly(vinyl alcohol) and doping agent as conductive nano-thin film for electronic application. Journal of Materials Science-Materials in Electronics 2013, 24 (8), 2897-2905.
100. Kang, E. T.; Ma, Z. H.; Tani, K. L.; Tretinnikov, O. N.; Uyama, Y.; Ikada, Y., Surface hardness of pristine and modified polyaniline films. Langmuir 1999, 15 (16), 5389-5395.
101. Hoshino, K.; Tokutomi, K.; Iwata, Y.; Kokado, H., Enhancement in chemical interaction at conducting polymers/n-Si interfaces by their electroreduction. Journal of the Electrochemical Society 1998, 145 (2), 711-720.
102. Yan, H.; Lee, P.; Armstrong, N. R.; Graham, A.; Evmenenko, G. A.; Dutta, P.; Marks, T. J., High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices. Journal of the American Chemical Society 2005, 127 (9), 3172-3183.
103. Mochalin, V. N.; Neitzel, I.; Etzold, B. J. M.; Peterson, A.; Palmese, G.; Gogotsi, Y., Covalent Incorporation of Aminated Nanodiamond into an Epoxy Polymer Network. Acs Nano 2011, 5 (9), 7494-7502.
104. Kaur, R.; Chitanda, J. M.; Michel, D.; Maley, J.; Borondics, F.; Yang, P.; Verrall, R. E.; Badea, I., Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies. International Journal of Nanomedicine 2012, 7, 3851-3866.
105. Chen, J.; Tong, H.; Gao, Z.; Zhu, J.; Zhang, X.; Liang, Y., Preparation of Polyaniline Covalently Grafted Carbon Nanotubes Supported Pt Catalysts and Its Electrocatalytic Performance for Methanol. Acta Chimica Sinica 2013, 71 (12), 1647-1655.
106. Gao, Z.; Tong, H.; Chen, J.; Yue, S.; Bai, W.; Zhang, X.; Pan, Y.; Shi, M.; Song, Y., Preparation and supercapacitive performance of Polyaniline Covalently Grafted Carbon Nanotubes Composite Material. Acta Chimica Sinica 2014, 72 (11), 1175-1181.
107. Ansari, M. O.; Mohammad, F., Thermal stability and electrical properties of dodecyl-benzene-sulfonic-acid doped nanocomposites of polyaniline and multi-walled carbon nanotubes. Composites Part B-Engineering 2012, 43 (8), 3541-3548.
108. Coskun, E.; Zaragoza-Contreras, E. A.; Salavagione, H. J., Synthesis of sulfonated graphene/polyaniline composites with improved electroactivity. Carbon 2012, 50 (6), 2235-2243.
109. Brook, I.; Mechrez, G.; Suckeveriene, R. Y.; Tchoudakov, R.; Narkis, M., A novel approach for preparation of conductive hybrid elastomeric nano-composites. Polymers for Advanced Technologies 2013, 24 (8), 758-763.
110. Kim, S.-H.; Lee, C.-H.; Yun, J.-M.; Noh, Y.-J.; Kim, S.-S.; Lee, S.; Jo, S. M.; Joh, H.-I.; Na, S.-I., Fluorine-functionalized and simultaneously reduced graphene oxide as a novel hole transporting layer for highly efficient and stable organic photovoltaic cells. Nanoscale 2014, 6 (13), 7183-7187.
111. Resta, V.; Caricato, A. P.; Loiudice, A.; Rizzo, A.; Gigli, G.; Taurino, A.; Catalano, M.; Martino, M., Pulsed laser deposition of a dense and uniform Au nanoparticles layer for surface plasmon enhanced efficiency hybrid solar cells. Journal of Nanoparticle Research 2013, 15 (11).
112. Guo, X.; Jian, J.; Lin, L.; Zhu, H.; Zhu, S., O-2 plasma-functionalized SWCNTs and PEDOT/PSS composite film assembled by dielectrophoresis for ultrasensitive trimethylamine gas sensor. Analyst 2013, 138 (18), 5265-5273.
113. Collazos-Castro, J. E.; Hernandez-Labrado, G. R.; Polo, J. L.; Garcia-Rama, C., N-Cadherin- and L1-functionalised conducting polymers for synergistic stimulation and guidance of neural cell growth. Biomaterials 2013, 34 (14), 3603-3617.
114. Fonseca-Garcia, A.; Mota-Morales, J. D.; Quintero-Ortega, I. A.; Garcia-Carvajal, Z. Y.; Martinez-Lopez, V.; Ruvalcaba, E.; Landa-Solis, C.; Solis, L.; Ibarra, C.; Gutierrez, M. C.; Terrones, M.; Sanchez, I. C.; del Monte, F.; Velasquillo, M. C.; Luna-Barcenas, G., Effect of doping in carbon nanotubes on the viability of biomimetic chitosan-carbon nanotubes-hydroxyapatite scaffolds. Journal of Biomedical Materials Research Part A 2014, 102 (10), 3341-3351.
115. von Wangenheim, D.; Fangerau, J.; Schmitz, A.; Smith, R. S.; Leitte, H.; Stelzer, E. H.; Maizel, A., Rules and Self-Organizing Properties of Post-embryonic Plant Organ Cell Division Patterns. Curr Biol 2016, 26 (4), 439-49.
116. K.E. Aasmundtveit, E. J. S., L.A.A. Pettersson, 0. Inganas, T. Johansson and R. Feidenhans, Structure of thin films of PEDOT. Synthetic Materia 1999.
117. Thomas, C. A.; Zong, K.; Schottland, P.; Reynolds, J. R., Poly(3,4-alkylenedioxypyrrole)s as Highly Stable Aqueous-Compatible Conducting Polymers with Biomedical Implications. Advanced materials 2000, 12 (3), 222-225.
118. Peramo, A.; Urbanchek, M. G.; Spanninga, S. A.; Povlich, L. K.; Cederna, P.; Martin, D. C., In Situ Polymerization of a Conductive Polymer in Acellular Muscle Tissue Constructs. Tissue Engineering Part A 2008, 14 (3), 423-432.
119. Salto, C.; Saindon, E.; Bolin, M.; Kanciurzewska, A.; Fahlman, M.; Jager, E. W. H.; Tengvall, P.; Arenas, E.; Berggren, M., Control of Neural Stem Cell Adhesion and Density by an Electronic Polymer Surface Switch. Langmuir 2008, 24 (24), 14133-14138.
120. Luo, S.-C.; Mohamed Ali, E.; Tansil, N. C.; Yu, H.-h.; Gao, S.; Kantchev, E. A. B.; Ying, J. Y., Poly(3,4-ethylenedioxythiophene) (PEDOT) Nanobiointerfaces: Thin, Ultrasmooth, and Functionalized PEDOT Films with in Vitro and in Vivo Biocompatibility. Langmuir 2008, 24 (15), 8071-8077.
121. Belaidi, F. S.; Civelas, A.; Castagnola, V.; Tsopela, A.; Mazenq, L.; Gros, P.; Launay, J.; Temple-Boyer, P., PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators B-Chemical 2015, 214, 1-9.
122. Strakosas, X.; Bongo, M.; Owens, R. M., The organic electrochemical transistor for biological applications. Journal of Applied Polymer Science 2015, 132 (15).
123. Wang, Z.; Zhang, H.; Wang, Z.; Zhang, J.; Duan, X.; Xu, J.; Wen, Y., Trace analysis of Ponceau 4R in soft drinks using differential pulse stripping voltammetry at SWCNTs composite electrodes based on PEDOT:PSS derivatives. Food Chemistry 2015, 180, 186-193.
124. Kim, H.; Lee, Y.-J.; Park, G.-G.; Park, S.-H.; Choi, Y.-Y.; Yoo, Y., Fabrication of carbon paper containing PEDOT:PSS for use as a gas diffusion layer in proton exchange membrane fuel cells. Carbon 2015, 85, 422-428.
125. Liu, X.; Wu, W.; Gu, Z., Poly (3,4-ethylenedioxythiophene) promotes direct electron transfer at the interface between Shewanella loihica and the anode in a microbial fuel cell. Journal of Power Sources 2015, 277, 110-115.
126. Krukiewicz, K.; Zak, J. K., Conjugated polymers as robust carriers for controlled delivery of anti-inflammatory drugs. Journal of Materials Science 2014, 49 (16), 5738-5745.
127. Sui, L.; Song, X. J.; Ren, J.; Cai, W. J.; Ju, L. H.; Wang, Y.; Wang, L. Y.; Chen, M., In vitro and in vivo evaluation of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)/ dopamine-coated electrodes for dopamine delivery. Journal of Biomedical Materials Research Part A 2014, 102 (6), 1681-1696.
128. Boehler, C.; Asplund, M., A detailed insight into drug delivery from PEDOT based on analytical methods: Effects and side effects. Journal of Biomedical Materials Research Part A 2015, 103 (3), 1200-1207.
129. Prabakar, S. J. R.; Pyo, M., Corrosion protection of aluminum in LiPF6 by poly(3,4-ethylenedioxythiophene) nanosphere-coated multiwalled carbon nanotube. Corrosion Science 2012, 57, 42-48.
130. Zhu, G.; Hou, J.; Zhu, H.; Qiu, R.; Xu, J., Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) on stainless steel and its corrosion inhibition performance. Journal of Coatings Technology and Research 2013, 10 (5), 659-668.
131. Sirivisoot, S.; Pareta, R.; Harrison, B. S., Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration. Interface Focus 2014, 4 (1).
132. Shahini, A.; Yazdimamaghani, M.; Walker, K. J.; Eastman, M. A.; Hatami-Marbini, H.; Smith, B. J.; Ricci, J. L.; Madihally, S. V.; Vashaee, D.; Tayebi, L., 3D conductive nanocomposite scaffold for bone tissue engineering. International Journal of Nanomedicine 2014, 9, 167-181.
133. Baek, S.; Green, R. A.; Poole-Warren, L. A., Effects of dopants on the biomechanical properties of conducting polymer films on platinum electrodes. Journal of Biomedical Materials Research Part A 2014, 102 (8), 2743-2754.
134. Baek, S.; Green, R. A.; Poole-Warren, L. A., The biological and electrical trade-offs related to the thickness of conducting polymers for neural applications. Acta biomaterialia 2014, 10 (7), 3048-3058.
135. Hsiao, Y.-S.; Kuo, C.-W.; Chen, P., Multifunctional Graphene-PEDOT Microelectrodes for On Chip Manipulation of Human Mesenchymal Stem Cells. Advanced Functional Materials 2013, 23 (37), 4649-4656.
136. Hsiao, Y.-S.; Lin, C.-C.; Hsieh, H.-J.; Tsai, S.-M.; Kuo, C.-W.; Chu, C.-W.; Chen, P., Manipulating location, polarity, and outgrowth length of neuron-like pheochromocytoma (PC-12) cells on patterned organic electrode arrays. Lab on a chip 2011, 11 (21), 3674-3680.
137. Saha, K.; Keung, A. J.; Irwin, E. F.; Li, Y.; Little, L.; Schaffer, D. V.; Healy, K. E., Substrate Modulus Directs Neural Stem Cell Behavior. Biophysical Journal 2008, 95 (9), 4426-4438.
138. Xu, Y.; Shi, Y.; Ding, S., A chemical approach to stem-cell biology and regenerative medicine. Nature 2008, 453 (7193), 338-344.
139. He, P.; Hagiwara, K.; Chong, H.; Yu, H. H.; Ito, Y., Low-Molecular-Weight Polyethyleneimine Grafted Polythiophene for Efficient siRNA Delivery. Biomed Res Int 2015, 2015, 406389.
140. Hsiao, Y. S.; Luo, S. C.; Hou, S.; Zhu, B.; Sekine, J.; Kuo, C. W.; Chueh, D. Y.; Yu, H. H.; Tseng, H. R.; Chen, P., 3D bioelectronic interface: capturing circulating tumor cells onto conducting polymer-based micro/nanorod arrays with chemical and topographical control. Small 2014, 10 (15), 3012-7.
141. Hsiao, Y.-S.; Ho, B.-C.; Yan, H.-X.; Kuo, C.-W.; Chueh, D.-Y.; Yu, H.-h.; Chen, P., Integrated 3D conducting polymer-based bioelectronics for capture and release of circulating tumor cells. J. Mater. Chem. B 2015, 3 (25), 5103-5110.
142. Gomez, N.; Lee, J. Y.; Nickels, J. D.; Schmidt, C. E., Micropatterned Polypyrrole: A Combination of Electrical and Topographical Characteristics for the Stimulation of Cells. Adv Funct Mater 2007, 17 (10), 1645-1653.
143. Kim, Y. T.; Karthikeyan, K.; Chirvi, S.; Dave, D. P., Neuro-optical microfluidic platform to study injury and regeneration of single axons. Lab Chip 2009, 9 (17), 2576-81.
144. Shi, P.; Nedelec, S.; Wichterle, H.; Kam, L. C., Combined microfluidics/protein patterning platform for pharmacological interrogation of axon pathfinding. Lab Chip 2010, 10 (8), 1005-10.
145. Wang, J.; Ren, L.; Li, L.; Liu, W.; Zhou, J.; Yu, W.; Tong, D.; Chen, S., Microfluidics: a new cosset for neurobiology. Lab Chip 2009, 9 (5), 644-52.
146. Ferrari, A.; Cecchini, M.; Serresi, M.; Faraci, P.; Pisignano, D.; Beltram, F., Neuronal polarity selection by topography-induced focal adhesion control. Biomaterials 2010, 31 (17), 4682-94.
147. Ferrari, A.; Faraci, P.; Cecchini, M.; Beltram, F., The effect of alternative neuronal differentiation pathways on PC12 cell adhesion and neurite alignment to nanogratings. Biomaterials 2010, 31 (9), 2565-73.
148. Hellman, A. N.; Vahidi, B.; Kim, H. J.; Mismar, W.; Steward, O.; Jeon, N. L.; Venugopalan, V., Examination of axonal injury and regeneration in micropatterned neuronal culture using pulsed laser microbeam dissection. Lab Chip 2010, 10 (16), 2083-92.
149. Millet, L. J.; Stewart, M. E.; Nuzzo, R. G.; Gillette, M. U., Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab Chip 2010, 10 (12), 1525-35.
150. Wu, H. I.; Cheng, G. H.; Wong, Y. Y.; Lin, C. M.; Fang, W.; Chow, W. Y.; Chang, Y. C., A lab-on-a-chip platform for studying the subcellular functional proteome of neuronal axons. Lab Chip 2010, 10 (5), 647-53.
151. Ostrakhovitch, E. A.; Byers, J. C.; O'Neil, K. D.; Semenikhin, O. A., Directed differentiation of embryonic P19 cells and neural stem cells into neural lineage on conducting PEDOT-PEG and ITO glass substrates. Archives of Biochemistry and Biophysics 2012, 528 (1), 21-31.
152. Baek, S.; Green, R.; Granville, A.; Martens, P.; Poole-Warren, L., Thin film hydrophilic electroactive polymer coatings for bioelectrodes. Journal of Materials Chemistry B 2013, 1 (31), 3803-3810.
153. Furukawa, Y.; Shimada, A.; Kato, K.; Iwata, H.; Torimitsu, K., Monitoring neural stem cell differentiation using PEDOT-PSS based MEA. Biochimica Et Biophysica Acta-General Subjects 2013, 1830 (9), 4329-4333.
154. Bernardeschi, I.; Greco, F.; Ciofani, G.; Marino, A.; Mattoli, V.; Mazzolai, B.; Beccai, L., A soft, stretchable and conductive biointerface for cell mechanobiology. Biomedical Microdevices 2015, 17 (2).
155. Pires, F.; Ferreira, Q.; Rodrigues, C. A. V.; Morgado, J.; Ferreira, F. C., Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochimica Et Biophysica Acta-General Subjects 2015, 1850 (6), 1158-1168.
156. Lu, C.-H.; Hsiao, Y.-S.; Kuo, C.-W.; Chen, P., Electrically tunable organic bioelectronics for spatial and temporal manipulation of neuron-like pheochromocytoma (PC-12) cells. Biochimica Et Biophysica Acta-General Subjects 2013, 1830 (9), 4321-4328.
157. Sasaki, M.; Karikkineth, B. C.; Nagamine, K.; Kaji, H.; Torimitsu, K.; Nishizawa, M., Highly Conductive Stretchable and Biocompatible Electrode-Hydrogel Hybrids for Advanced Tissue Engineering. Advanced Healthcare Materials 2014, 3 (11), 1919-1927.
158. Lu, C. H.; Hsiao, Y. S.; Kuo, C. W.; Chen, P., Electrically tunable organic bioelectronics for spatial and temporal manipulation of neuron-like pheochromocytoma (PC-12) cells. Biochim Biophys Acta 2013, 1830 (9), 4321-8.
159. Hsiao, Y. S.; Liao, Y. H.; Chen, H. L.; Chen, P.; Chen, F. C., Organic Photovoltaics and Bioelectrodes Providing Electrical Stimulation for PC12 Cell Differentiation and Neurite Outgrowth. ACS Appl Mater Interfaces 2016, 8 (14), 9275-84.
160. Zhu, B.; Luo, S. C.; Zhao, H.; Lin, H. A.; Sekine, J.; Nakao, A.; Chen, C.; Yamashita, Y.; Yu, H. H., Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nat Commun 2014, 5, 4523.
161. Bolin, M. H.; Svennersten, K.; Wang, X.; Chronakis, I. S.; Richter-Dahlfors, A.; Jager, E. W. H.; Berggren, M., Nano-fiber scaffold electrodes based on PEDOT for cell stimulation. Sensors and Actuators B: Chemical 2009, 142 (2), 451-456.
162. Fonner, J. M.; Forciniti, L.; Nguyen, H.; Byrne, J.; Kou, Y.-F.; Syeda-Nawaz, J.; Schmidt, C. E., Biocompatibility Implications of Polypyrrole Synthesis Techniques. Biomedical materials (Bristol, England) 2008, 3 (3), 034124-034124.
163. Kroon, R.; Mengistie, D. A.; Kiefer, D.; Hynynen, J.; Ryan, J. D.; Yu, L.; Müller, C., Thermoelectric plastics: from design to synthesis, processing and structure–property relationships. Chemical Society Reviews 2016, 45 (22), 6147-6164.
164. Green, R. A.; Hassarati, R. T.; Bouchinet, L.; Lee, C. S.; Cheong, G. L. M.; Yu, J. F.; Dodds, C. W.; Suaning, G. J.; Poole-Warren, L. A.; Lovell, N. H., Substrate dependent stability of conducting polymer coatings on medical electrodes. Biomaterials 2012, 33 (25), 5875-5886.
165. Yoon, S.-S.; Khang, D.-Y., Roles of Nonionic Surfactant Additives in PEDOT:PSS Thin Films. The Journal of Physical Chemistry C 2016, 120 (51), 29525-29532.
166. Wang, T.; Qi, Y.; Xu, J.; Hu, X.; Chen, P., Effects of poly(ethylene glycol) on electrical conductivity of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonic acid) film. Applied Surface Science 2005, 250 (1), 188-194.
167. Kim, J. Y.; Jung, J. H.; Lee, D. E.; Joo, J., Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synthetic Metals 2002, 126 (2), 311-316.
168. Skotheim, T. A.; Reynolds, J., Conjugated Polymers: Theory, Synthesis, Properties, and Characterization. CRC Press: 2006.
169. Hansen, T. S.; West, K.; Hassager, O.; Larsen, N. B., An all-polymer micropump based on the conductive polymer poly(3,4-ethylenedioxythiophene) and a polyurethane channel system. Journal of Micromechanics and Microengineering 2007, 17 (5), 860-866.
170. Andresen, K.; Hansen, M.; Matschuk, M.; Jepsen, S. T.; Sørensen, H. S.; Utko, P.; Selmeczi, D.; Hansen, T. S.; Larsen, N. B.; Rozlosnik, N.; Taboryski, R. J., Injection molded chips with integrated conducting polymer electrodes for electroporation of cells. Journal of Micromechanics and Microengineering 2010, 20 (5), 55010.
171. Khalili H.; Dashti-khavidaki S.; Sajadi S.; Hajiabolbaghi M., Assessment of adherence to tuberculosis drug regimen. DARU Journal of Pharmaceutical Sciences 2008, 4.
172. Fraimow, H. S., Systemic Antimicrobial Therapy in Osteomyelitis. Seminars in Plastic Surgery 2009, 23 (2), 90-99.
173. Forrest, G. N.; Tamura, K., Rifampin Combination Therapy for Nonmycobacterial Infections. Clinical Microbiology Reviews 2010, 23 (1), 14-34.
174. Espinosa-Mansilla, A.; Acedo Valenzuela, M. I.; Muñoz de la Peña, A.; Salinas, F.; Cañada, F. C., Comparative study of partial least squares and a modification of hybrid linear analysis calibration in the simultaneous spectrophotometric determination of rifampicin, pyrazinamide and isoniazid. Analytica Chimica Acta 2001, 427 (1), 129-136.
175. Halvatzis, S. A.; Timotheou-Potamia, M. M.; Hadjiioannou, T. P., Continuous-flow chemiluminometric determination of dihydralazine, rifampicin and rifamycin SV by oxidation with N-bromosuccinimide. Analytica Chimica Acta 1993, 272 (2), 251-263.
176. Alonso Lomillo, M. A.; Domı́nguez Renedo, O.; Arcos Martı́nez, M. J., Resolution of ternary mixtures of rifampicin, isoniazid and pyrazinamide by differential pulse polarography and partial least squares method. Analytica Chimica Acta 2001, 449 (1), 167-177.
177. Swart, K. J.; Papgis, M., Automated high-performance liquid chromatographic method for the determination of rifampicin in plasma. Journal of Chromatography A 1992, 593 (1), 21-24.
178. Panchagnula, R.; Sood, A.; Sharda, N.; Kaur, K.; Kaul, C. L., Determination of rifampicin and its main metabolite in plasma and urine in presence of pyrazinamide and isoniazid by HPLC method. Journal of Pharmaceutical and Biomedical Analysis 1999, 18 (6), 1013-1020.
179. Calleja, I.; Blanco-Prı́eto, M. a. J.; Ruz, N.; Renedo, M. a. J.; Dios-Viéitez, M. a. C., High-performance liquid–chromatographic determination of rifampicin in plasma and tissues. Journal of Chromatography A 2004, 1031 (1), 289-294.
180. Riva, E.; Merati, R.; Cavenaghi, L., High-performance liquid chromatographic determination of rifapentine and its metabolite in human plasma by direct injection into a shielded hydrophobic phase column. Journal of Chromatography A 1991, 553, 35-40.
181. Calleri, E.; De Lorenzi, E.; Furlanetto, S.; Massolini, G.; Caccialanza, G., Validation of a RP-LC method for the simultaneous determination of isoniazid, pyrazinamide and rifampicin in a pharmaceutical formulation. Journal of Pharmaceutical and Biomedical Analysis 2002, 29 (6), 1089-1096.
182. Carrilho, E.; Martinez, A. W.; Whitesides, G. M., Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics. Analytical Chemistry 2009, 81 (16), 7091-7095.
183. Cheng, C.-M.; Martinez, A. W.; Gong, J.; Mace, C. R.; Phillips, S. T.; Carrilho, E.; Mirica, K. A.; Whitesides, G. M., Paper-Based ELISA. Angewandte Chemie International Edition 2010, 49 (28), 4771-4774.
184. Tsou, C.-J.; Hsia, C.-H.; Chu, J.-Y.; Hung, Y.; Chen, Y.-P.; Chien, F.-C.; Chou, K. C.; Chen, P.; Mou, C.-Y., Local pH tracking in living cells. Nanoscale 2015, 7 (9), 4217-4225.
185. Ruedas-Rama, M. J.; Walters, J. D.; Orte, A.; Hall, E. A. H., Fluorescent nanoparticles for intracellular sensing: A review. Analytica Chimica Acta 2012, 751, 1-23.
186. Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M., Gold Nanoparticles in Chemical and Biological Sensing. Chemical Reviews 2012, 112 (5), 2739-2779.
187. Charan, S.; Chien, F.-C.; Singh, N.; Kuo, C.-W.; Chen, P., Development of Lipid Targeting Raman Probes for In Vivo Imaging of Caenorhabditis elegans. Chemistry – A European Journal 2011, 17 (18), 5165-5170.
188. Segev-Bar, M.; Haick, H., Flexible Sensors Based on Nanoparticles. ACS Nano 2013, 7 (10), 8366-8378.
189. Singh, N.; Charan, S.; Sanjiv, K.; Huang, S.-H.; Hsiao, Y.-C.; Kuo, C.-W.; Chien, F.-C.; Lee, T.-C.; Chen, P., Synthesis of Tunable and Multifunctional Ni-Doped Near-Infrared QDs for Cancer Cell Targeting and Cellular Sorting. Bioconjugate Chemistry 2012, 23 (3), 421-430.
190. Chen, Z.; Qian, S.; Chen, J.; Chen, X., Highly fluorescent gold nanoclusters based sensor for the detection of quercetin. Journal of Nanoparticle Research 2012, 14 (12), 1264.
191. Wei, H.; Wang, Z.; Yang, L.; Tian, S.; Hou, C.; Lu, Y., Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg2+ sensor. Analyst 2010, 135 (6), 1406-1410.
192. Liu, X.; Zong, C.; Lu, L., Fluorescent silver nanoclusters for user-friendly detection of Cu2+ on a paper platform. Analyst 2012, 137 (10), 2406-2414.
193. Yu, O.-Y.; Cheng, Y.-F.; Huang, S.-Y.; Bai, A.-M.; Hu, Y.-J., Probing the Binding of Rifampicin to Bovine Serum Albumin in Aqueous Solution. Journal of Solution Chemistry 2011, 40 (10), 1711-1723.
194. Markarian, S. A.; Aznauryan, M. G., Study on the interaction between isoniazid and bovine serum albumin by fluorescence spectroscopy: the effect of dimethylsulfoxide. Molecular Biology Reports 2012, 39 (7), 7559-7567.
195. Martinez, A. W.; Phillips, S. T.; Carrilho, E.; Thomas, S. W.; Sindi, H.; Whitesides, G. M., Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis. Analytical Chemistry 2008, 80 (10), 3699-3707.
196. Veigas, B.; Jacob, J. M.; Costa, M. N.; Santos, D. S.; Viveiros, M.; Inacio, J.; Martins, R.; Barquinha, P.; Fortunato, E.; Baptista, P. V., Gold on paper-paper platform for Au-nanoprobe TB detection. Lab on a Chip 2012, 12 (22), 4802-4808.
197. Iqbal, Z.; Eriksson, M., Classification and quantitative optical analysis of liquid and solid samples using a mobile phone as illumination source and detector. Sensors and Actuators B: Chemical 2013, 185, 354-362.
198. Chen, P.-C.; Chiang, C.-K.; Chang, H.-T., Synthesis of fluorescent BSA–Au NCs for the detection of Hg2+ ions. Journal of Nanoparticle Research 2012, 15 (1), 1336.
199. Chu, M.; Wu, F.; Zhang, Q.; Liu, T.; Yu, Y.; Ji, A.; Xu, K.; Feng, Z.; Zhu, J., A novel method for preparing quantum dot nanospheres with narrow size distribution. Nanoscale 2010, 2 (4), 542-547.
200. Hirayama, K.; Akashi, S.; Furuya, M.; Fukuhara, K.-i., Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and frit-FAB LC/MS. Biochemical and Biophysical Research Communications 1990, 173 (2), 639-646.
201. He, X. M.; Carter, D. C., Atomic structure and chemistry of human serum albumin. Nature 1992, 358 (6383), 209-215.
202. Lin, V. J. C.; Koenig, J. L., Raman studies of bovine serum albumin. Biopolymers 1976, 15 (1), 203-218.
203. Rüegg, M.; Moor, U.; Blanc, B., A calorimetric study of the thermal denaturation of whey proteins in simulated milk ultrafiltrate. Journal of Dairy Research 2009, 44 (3), 509-520.
204. Wetzel, R.; Becker, M.; Behlke, J.; Billwitz, H.; BöHm, S.; Ebert, B.; Hamann, H.; Krumbiegel, J.; Lassmann, G., Temperature Behaviour of Human Serum Albumin. European Journal of Biochemistry 1980, 104 (2), 469-478.
205. Bernal, V.; Jelen, P., Thermal Stability of Whey Proteins – A Calorimetric Study. Journal of Dairy Science 68 (11), 2847-2852.
206. Poole, S., Effects of basic proteins on the denaturation and heat-gelation of acidic proteins. Food Hydrocolloids 1987, 1, 301-316.
207. Magdum, P. A.; Gokavi, N. M.; Nandibewoor, S. T., Study on the interaction between anti-tuberculosis drug ethambutol and bovine serum albumin: multispectroscopic and cyclic voltammetric approaches. Luminescence 2017, 32 (2), 206-216.
208. Chaturvedi, S. K.; Siddiqi, M. K.; Alam, P.; Zaman, M.; Khan, R. H., Comparative binding study of anti-tuberculosis drug pyrazinamide with serum albumins. RSC Advances 2016, 6 (89), 85860-85869.
209. Turel, I.; Bukovec, P.; Quirós, M., Crystal structure of ciprofloxacin hexahydrate and its characterization. International Journal of Pharmaceutics 1997, 152 (1), 59-65.
210. Kerns, E. H.; Rourick, R. A.; Volk, K. J.; Lee, M. S., Buspirone metabolite structure profile using a standard liquid chromatographic-mass spectrometric protocol. Journal of Chromatography B: Biomedical Sciences and Applications 1997, 698 (1), 133-145.
211. Mokrosz, J. L.; Pietrasiewicz, M.; Duszynska, B.; Cegla, M. T., Structure-activity relationship studies of central nervous system (CNS) agents. 5. Effect of the hydrocarbon chain on the affinity of 4-substituted 1-(3-chlorophenyl)piperazines for 5-HT1A receptor sites. Journal of Medicinal Chemistry 1992, 35 (13), 2369-2374.
212. Varshney, A.; Ansari, Y.; Zaidi, N.; Ahmad, E.; Badr, G.; Alam, P.; Khan, R. H., Analysis of Binding Interaction Between Antibacterial Ciprofloxacin and Human Serum Albumin by Spectroscopic Techniques. Cell Biochemistry and Biophysics 2014, 70 (1), 93-101.
213. Gurumurthy, P.; Ramachandran, G.; Kumar, A. K. H.; Rajasekaran, S.; Padmapriyadarsini, C.; Swaminathan, S.; Bhagavathy, S.; Venkatesan, P.; Sekar, L.; Mahilmaran, A.; Ravichandran, N.; Paramesh, P., Decreased bioavailability of rifampin and other antituberculosis drugs in patients with advanced human immunodeficiency virus disease. Antimicrobial Agents and Chemotherapy 2004, 48 (11), 4473-4475.
214. Keen, P. M., The binding of penicillins to bovine serum albumin. Biochemical Pharmacology 1966, 15 (4), 447-463.
215. Jha, N. S.; Kishore, N., Binding of streptomycin with bovine serum albumin: Energetics and conformational aspects. Thermochimica Acta 2009, 482 (1), 21-29.
216. Bojko, B.; Sułkowska, A.; Maciążek-Jurczyk, M.; Równicka, J.; Sułkowski, W. W., Investigations of acetaminophen binding to bovine serum albumin in the presence of fatty acid: Fluorescence and 1H NMR studies. Journal of Molecular Structure 2009, 924, 332-337.
217. Meti, M. D.; Nandibewoor, S. T.; Joshi, S. D.; More, U. A.; Chimatadar, S. A., Multi-spectroscopic investigation of the binding interaction of fosfomycin with bovine serum albumin. Journal of Pharmaceutical Analysis 2015, 5 (4), 249-255.
218. Kim, C.-K.; Yang, J.-S.; Lim, Y.-S., Drug-biomacromolecule interaction IV. Archives of Pharmacal Research 1983, 6 (1), 55.
219. Kringelbach, M. L.; Jenkinson, N.; Owen, S. L. F.; Aziz, T. Z., Translational principles of deep brain stimulation. Nat Rev Neurosci 2007, 8 (8), 623-635.
220. Polikov, V. S.; Tresco, P. A.; Reichert, W. M., Response of brain tissue to chronically implanted neural electrodes. Journal of Neuroscience Methods 2005, 148 (1), 1-18.
221. Lempka, S. F.; Miocinovic, S.; Johnson, M. D.; Vitek, J. L.; McIntyre, C. C., In vivo impedance spectroscopy of deep brain stimulation electrodes. Journal of neural engineering 2009, 6 (4), 046001-046001.
222. Lozano, R.; Stevens, L.; Thompson, B. C.; Gilmore, K. J.; Gorkin, R., 3rd; Stewart, E. M.; in het Panhuis, M.; Romero-Ortega, M.; Wallace, G. G., 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 2015, 67, 264-73.
223. Harrison, R. G., The outgrowth of the nerve fiber as a mode of protoplasmic movement. Journal of Experimental Zoology 1910, 9 (4), 787-846.
224. Harrison, R. G.; Greenman, M. J.; Mall, F. P.; Jackson, C. M., Observations of the living developing nerve fiber. The Anatomical Record 1907, 1 (5), 116-128.
225. Carrel, A.; Burrows, M., Cultivation of adult tissues and organs outside of the body. Journal of the American Medical Association 1910, 55 (16), 1379-1381.
226. Carrel, A., A METHOD FOR THE PHYSIOLOGICAL STUDY OF TISSUES IN VITRO. The Journal of Experimental Medicine 1923, 38 (4), 407-418.
227. De Boni, U.; Chong, A. A.; Hawthorn, L. A., Organotypic development of neonate rabbit hippocampus in roller tube culture. Acta Neuropathologica 1984, 65 (1), 53-61.
228. Campenot, R. B., Local control of neurite development by nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America 1977, 74 (10), 4516-4519.
229. Millet, L. J.; Gillette, M. U., New perspectives on neuronal development via microfluidic environments. Trends in neurosciences 2012, 35 (12), 752-761.
230. Wang, J.; Ren, L.; Li, L.; Liu, W.; Zhou, J.; Yu, W.; Tong, D.; Chen, S., Microfluidics: A new cosset for neurobiology. Lab on a Chip 2009, 9 (5), 644-652.
231. Massobrio, P.; Tedesco, M.; Giachello, C.; Ghirardi, M.; Fiumara, F.; Martinoia, S., Helix neuronal ensembles with controlled cell type composition and placement develop functional polysynaptic circuits on Micro-Electrode Arrays. Neuroscience Letters 2009, 467 (2), 121-126.
232. Frey, U.; Egert, U.; Heer, F.; Hafizovic, S.; Hierlemann, A., Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosensors and Bioelectronics 2009, 24 (7), 2191-2198.
233. Green, R. A.; Lovell, N. H.; Wallace, G. G.; Poole-Warren, L. A., Conducting polymers for neural interfaces: Challenges in developing an effective long-term implant. Biomaterials 2008, 29 (24), 3393-3399.
234. Williamson, A.; Rivnay, J.; Kergoat, L.; Jonsson, A.; Inal, S.; Uguz, I.; Ferro, M.; Ivanov, A.; Sjöström, T. A.; Simon, D. T.; Berggren, M.; Malliaras, G. G.; Bernard, C., Controlling Epileptiform Activity with Organic Electronic Ion Pumps. Advanced Materials 2015, 27 (20), 3138-3144.
235. Dimitriev, O. P.; Grinko, D. A.; Noskov, Y. V.; Ogurtsov, N. A.; Pud, A. A., PEDOT:PSS films—Effect of organic solvent additives and annealing on the film conductivity. Synthetic Metals 2009, 159 (21–22), 2237-2239.
236. Zhang, L.; Stauffer, W. R.; Jane, E. P.; Sammak, P. J.; Cui, X. T., Enhanced Differentiation of Embryonic and Neural Stem Cells to Neuronal Fates on Laminin Peptides Doped Polypyrrole. Macromolecular Bioscience 2010, 10 (12), 1456-1464.
237. Lee, J. Y.; Bashur, C. A.; Goldstein, A. S.; Schmidt, C. E., Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 2009, 30 (26), 4325-35.
238. Massoumi, B.; Davtalab, S.; Jaymand, M.; Entezami, A. A., AB(2) Y-shaped miktoarm star conductive polyaniline-modified poly(ethylene glycol) and its electrospun nanofiber blend with poly(epsilon-caprolactone). Rsc Advances 2015, 5 (46), 36715-36726.
239. Zhang, J.; Qiu, K.; Sun, B.; Fang, J.; Zhang, K.; Ei-Hamshary, H.; Al-Deyab, S. S.; Mo, X., The aligned core-sheath nanofibers with electrical conductivity for neural tissue engineering. Journal of Materials Chemistry B 2014, 2 (45), 7945-7954.
240. Luo, X.; Weaver, C. L.; Tan, S.; Cui, X. T., Pure graphene oxide doped conducting polymer nanocomposite for bio-interfacing. Journal of Materials Chemistry B 2013, 1 (9), 1340-1348.
241. Richardson-Burns, S. M.; Hendricks, J. L.; Foster, B.; Povlich, L. K.; Kim, D.-H.; Martin, D. C., Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 2007, 28 (8), 1539-1552.
242. Furukawa, Y.; Shimada, A.; Kato, K.; Iwata, H.; Torimitsu, K., Monitoring neural stem cell differentiation using PEDOT–PSS based MEA. Biochimica et Biophysica Acta (BBA) - General Subjects 2013, 1830 (9), 4329-4333.
243. Collazos-Castro, J. E.; Polo, J. L.; Hernández-Labrado, G. R.; Padial-Cañete, V.; García-Rama, C., Bioelectrochemical control of neural cell development on conducting polymers. Biomaterials 2010, 31 (35), 9244-9255.
244. Khodagholy, D.; Rivnay, J.; Sessolo, M.; Gurfinkel, M.; Leleux, P.; Jimison, L. H.; Stavrinidou, E.; Herve, T.; Sanaur, S.; Owens, R. M.; Malliaras, G. G., High transconductance organic electrochemical transistors. 2013, 4, 2133.
245. Khodagholy, D.; Gelinas, J. N.; Thesen, T.; Doyle, W.; Devinsky, O.; Malliaras, G. G.; Buzsaki, G., NeuroGrid: recording action potentials from the surface of the brain. Nat Neurosci 2015, 18 (2), 310-315.
246. Khodagholy, D.; Doublet, T.; Gurfinkel, M.; Quilichini, P.; Ismailova, E.; Leleux, P.; Herve, T.; Sanaur, S.; Bernard, C.; Malliaras, G. G., Highly Conformable Conducting Polymer Electrodes for In Vivo Recordings. Advanced Materials 2011, 23 (36), H268-H272.
247. Pacifici, M.; Peruzzi, F., Isolation and Culture of Rat Embryonic Neural Cells: A Quick Protocol. Journal of visualized experiments : JoVE 2012, (63), e3965-e3965.
248. Nunez, J., Primary Culture of Hippocampal Neurons from P0 Newborn Rats. 2008, (19), e895.
249. Seibenhener, M. L.; Wooten, M. W., Isolation and Culture of Hippocampal Neurons from Prenatal Mice. Journal of Visualized Experiments : JoVE 2012, (65), 3634.
250. Beaudoin, G. M. J.; Lee, S.-H.; Singh, D.; Yuan, Y.; Ng, Y.-G.; Reichardt, L. F.; Arikkath, J., Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat. Protocols 2012, 7 (9), 1741-1754.
251. Nunez, J., Primary Culture of Hippocampal Neurons from P0 Newborn Rats. Journal of Visualized Experiments : JoVE 2008, (19), 895.