簡易檢索 / 詳目顯示

研究生: 銀琬春
Yin Wan-chun
論文名稱: 利用基因轉殖技術增加蕃茄之茄紅素含量
Improving lycopene production in tomato plants by genetic transformation
指導教授: 黎耀基
Lai Yiu-Kay
陶建英
To Kin-Ying
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 79
中文關鍵詞: 農桿菌茄紅素組織培養蕃茄基因轉殖
外文關鍵詞: Agrobacterium, lycopene, tissue culture, tomato, transformation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用反轉錄酶-聚合酶鏈反應(RT-PCR)技術,將類胡蘿蔔素生物合成路徑的關鍵基因〔包括phytoene synthase (PSY), phytoene desaturase (PDS), ζ-carotene desaturase (ZDS) 及 lycopene cyclase (LCY)〕大量增殖,並將這些基因選殖至植物表現載體pH2GW7上。此載體內含抗生素hygromycin篩選基因,而目標基因則插至CaMV 35S啟動子及CaMV 35S終止子之間。從無菌培養之蕃茄(Lycopersicon esculentum cv. CL5915) 切取子葉,並以農桿菌(Agrobacterium tumefaciens strain LBA4404) 感染子葉培植體。經過抗生素hygromycin篩選並以PCR方法鑑定後,4種表現載體各獲得10至24株轉殖株,最後並轉移至溫室栽種。這些轉殖株之外型,包括花及果實之顏色,均與野生型蕃茄無異。唯一例外是轉殖株PSY26,它的花朵呈微黃至純白色,而野生型花朵則為鮮黃色。再則,PSY26之果實呈微紅至黃色。收集8株轉殖株(每種表現載體任意選取2株植株)及PSY26之蕃茄,經乾燥後蕃茄內lycopene及β-carotene之含量以HPLC測定之。與野生型蕃茄比較,我們發現這些轉殖株內lycopene之含量均增加1至3倍,其中以PDS4增幅3.84倍最多。另外,轉殖株內β-carotene之含量亦有增加。相反地,lycopene及β-carotene在PSY26(黃色蕃茄)與野生型(紅色蕃茄)並無顯著差異。


    In this study, key genes in carotenoid biosynyhetic pathway encoding phytoene synthase (PSY), phytoene desaturase (PDS), ζ-carotene desaturase (ZDS) and lycopene cyclase (LCY) were amplified by RT-PCR (reverse transcription-polymerase chain reaction) and then cloned into plant expression vector pH2GW7. This vector contains a hygromycin-resistant marker, and the target gene was inserted between CaMV 35S promoter and CaMV 35S terminator. Cotyledons from in vitro grown tomato (Lycopersicon esculentum cv. CL5915) were excised, and then were infected by Agrobacterium tumefaciens strain LBA4404. After antibiotic (hygromycin) selection and then verified by genomic PCR analysis, 10 to 24 transgenic plants from each construct were finally transferred into green house until maturity. All transgenic plants looked similar with the wild-type plant including color pattern in flowers and fruits, except for PSY26. Flowers of wild-type plant were bright yellow, whereas flowers of the transgenic line PSY26 were slight yellow to complete white. Fruits of wild-type plant were red at the end of fruit development, whereas fruits of PSY26 were slight red to yellow. Fruits from 8 transgenic plants (2 plants were randomly selected from each construct) as well as PSY26 were harvested and dried, and HPLC analysis was conducted to examine the contents of lycopene and β-carotene. We found that all the transgenic lines accumulated more lycopene, ranging from 1 to 3 folds, as compared to the wild-type plant, especially 3.84 folds was detected in PDS-4. Also, β-carotene has increased in all transgenic lines we examined. By contrast, both contents of lycopene and β-carotene in PSY26 (yellow fruits) were found similar to wild-type plant (red fruits).

    List of Tables ----------------------------------------------------------------------------------Ⅶ List of Figures --------------------------------------------------------------------------------Ⅷ List of Appendixes----------------------------------------------------------------------------Ⅺ 1. Introduction---------------------------------------------------------------------------------- 1 2. Materials -------------------------------------------------------------------------------------7 2.1. Plant material-------------------------------------------------------------------------7 2.2. Chemicals, competent cell and enzymes--------------------------------------7 2.3. Antibiotics----------------------------------------------------------------------------12 2.4. Media ---------------------------------------------------------------------------------12 2.5. Buffers and solutions--------------------------------------------------------------15 2.6. Apparatus for HPLC analysis----------------------------------------------------15 3.Methods -------------------------------------------------------------------------------------17 3.1. Plant growth conditions ----------------------------------------------------------17 3.2. RNA isolation from tomato fruits------------------------------------------------17 3.3. Cloning of full-length cDNAs---------------------------------------------------- 18 3.4. Construction of expression vector----------------------------------------------19 3.5. lntroduction of plasmid DNA into Agrobacterium by electroporation--21 3.6. In vitro germination of tomato seeds-------------------------------------------22 3.7. Plant transformation by Agrobacterium-mediated method---------------22 3.8. Analysis of transgenic tomato plants -----------------------------------------24 3.9. HPLC analysis of carotenoids in tomato--------------------------------------25 4. Results---------------------------------------------------------------------------------------29 5. Discussion ----------------------------------------------------------------------------------37 6. References ---------------------------------------------------------------------------------45 Tables-------------------------------------------------------------------------------------------52 Figures------------------------------------------------------------------------------------------55 Appendixes------------------------------------------------------------------------------------78

    Bartley, G.E. & Ishida, B.K. (1999) Zeta-carotene desaturase (Accession No. AF195507) from tomato (PGR99-181). Plant Physiol. 121: 1384.
    Bartley, G.E. & Scolnik, P.A. (1994) Molecular biology of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 287-301.
    Bartley, G.E., Viitanen, P.V., Bacot, K.O. & Scolnik, P.A. (1992) A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway. J. Biol. Chem. 267:5036-5039.
    Ben-Dor, A., Nahum, A. & Danilenko, M. (2001) Effects of acyclo-retinoic acid and lycopene on activation of the retinoic acid receptor and proliferation of mammary cancer cells. Arch. Biochem. Biophys. 391: 295-302.
    Boileau, A.C., Merchen, N.R., Wasson, K., Atkinson, C.A. & Erdman, J,W. (1999) Cis-lycopene is more bioavailable than trans-lycopene in vitro and in vivo in lymph-cannulated ferrets. J Nutr. 129: 1176-1181.
    Botella-Pavía, P. & Rodríguez-Concepción, M. (2006) Carotenoid biotechnology in plants for nutritionally improved foods. Physiol. Plant. 126: 343–355.
    Bramley, P., Teulieres, C., Blain, I., Bird, C. & Schuch, W. (1992) Biochemical characterization of transgenic tomato plants in which carotenoid synthesis has been inhibited through the expression of antisense RNA to pTOM5. Plant J. 2: 343-349.
    Busch, M., Seuter, A. & Hain, R. (2002) Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol. 128: 439-453.
    Chen, P.Y., Wang, C.K., Soong, S.C. & To, K.Y. (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol. Breed. 11: 287-293.
    Chen, T.M. & Chen, B.H. (1994) Optimization of mobile phase for the HPLC of cis-trans carotene isomers. Chromatographia 39: 346-254.
    Cortina, C. & Culiáñez-Macià, F.A. (2004) Tomato transformation and transgenic plant production. Plant Cell Tiss. Org. Cult. 76: 269-275.
    Cunningham, F. & Gantt, E. (1998) Gene and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 557-583.
    Cunningham, F., Pogson, B., Sun, Z., McDonald, K., DellaPenna, D. & Gantt, E. (1996) Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8: 1613-1626.
    Dharmapuri, S., Rosati, C., Pallara, P., Aquilani, R., Bouvier, F., Camara, B. & Giuliano, G. (2002) Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett. 519: 30-34.
    Fraser, P.D., Römer, S., Kiano, J.W., Shiton, C.A., Mills, P.B. Drake, R., Schuch, W. & Bramley, P.M. (2001) Elevation of carotenoids in tomato by genetic manipulation. J. Sci. Food Agric. 81: 822-827.
    Fray, R., Wallace, A., Fraser, P., Valero, D., Hedden, P., Bramley, P. & Grierson, D. (1995) Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J. 8: 693-701.
    Gawel, N.J. & Jarret, R.L. (1991) A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol. Biol. Rep. 9: 262–266.
    Giovanucci, E., Ascherio, A., Rimme, E.B., Stampfer, M.J., Colditz, G.A. & Willett, W. (1995) Intake of carotenoids and retinol in relation to risk of prostate cancer. J. Natl. Cancer Inst. 87: 1767-1776.
    Giuliano, G., Bartley, G.E. & Scolnik, P.A. (1993) Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5: 379-387.
    Hsieh, T.H., Lee, J.T., Yang, P.T., Chiu, L.H., Charng, Y.Y., Wang, Y.C. & Chan, M.T. (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 129: 1086-1094.
    Khachik, F., Carvalho, L., Bernstein, P.S., Muir, G.J., Zhao, D.Y. & Katz, N.B. (2002) Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp. Biol. Med. 227: 845-851.
    Kucuk, O., Sarkar, F.H., Djuric, Z., Sakr, W., Pollak, M.N. & Khachik, F. (2002) Effects of lycopene supplementation in patients with localized prostate cancer. Exp. Biol. Med. 227: 881-885.
    Lee, M.T. & Chen, B.H. (2001) Separation of lycopene and its cis isomers by liquid chromatography. Chromatographia 54: 613-617.
    Li, H.Y., Chang, C.S., Lu, L.S., Liu, C.A., Chan, M.T. & Charng, Y. Y. (2003) Over-expression of Arabidopsis thaliana heat shock factor gene (AtHsfA1b) enhances chilling tolerance in transgenic tomato. Bot. Bull. Acad. Sin. 44: 129-140.
    Lin, C.H. & Chen, B.H. (2003) Determination of carotenoids in tomato juice by liquid chromatography. J. Chromatogr. A 1012: 103-109.
    Miller, E.C., Giovannucci, E., Erdman, J.W., Bahnson, R., Schwartz, S.J. &Clinton, S.K. (2002) Tomato products, lycopene, and prostate cancer risk. Urol. Clin. North Am. 29: 83-93.
    Paine, J.A., Shipton, C.A., Chaggar, S., Howells, R.M., Kennedy, M.J., Vernon, G., Wright, S.Y., Hinchliffe, E., Adams, J.L., Silverstone, A.L. & Drake, R. (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23: 429-430.
    Pfitzner, A.J. (1998) Transformation of tomato. Methods Mol. Biol. 81: 359-363.
    Ravanello, M.P., Ke, D., Alvarez, J., Huang, B. & Shewmaker, C.K. (2003) Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab. Eng. 5: 255-263.
    Riso, P., Visioli, F., Grande, S., Guarnieri, S., Gardana, C., Simonetti, P. & Porrini, M. (2006) Effect of a tomato-based drink on markers of inflammation, immunomodulation, and oxidative stress. J. Agric. Food Chem. 54: 2563-2566.
    Römer, S. & Fraser P.D. (2005) Recent advances in carotenoid biosynthesis, regulation and manipulation. Planta 221: 305–308.
    Römer, S., Fraser, P.D., Kiano, J.W., Shipton, C.A., Misawa, N., Schuch, W. & Bramley, P.M. (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat. Biotechnol. 18: 666-669.
    Rosati, C., Aquilani, R., Dharmapuri, S., Pallara, P., Marusic, C., Tavazza, R., Bouvier, F., Camara, B. & Giuliano, G. (2000) Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J. 24: 413-419.
    Schaub, P., Al-Babili, S., Drake, R. & Beyer, P. (2005) Why is golden rice golden (yellow) instead of red? Plant Physiol. 138: 441-450.
    Shewmaker, C.K., Sheehy, J.A., Daley, M., Colburn, S. & Ke, D.Y. (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J. 20: 401-412.
    Stahl, W. & Sies, H. (1992) Uptake of lycopene and its geometrical isomers is greater from heat-processed than from unprocessed tomato juice in humans. J. Nutr. 122: 2161-2166.
    Taylor, M. & Ramsay, G. (2005) Carotenoid biosynthesis in plant storage organs: recent advances and prospects for improving plant food quality. Physiol. Plant. 124: 143–151.
    To, K.Y., Lai. E.M., Lee. L.Y., Lin. T.P., Hung. C.H., Chen. C.L., Chang. Y.S. & Liu,S.T. (1994) Analysis of the gene cluster encoding carotenoid biosynthesis in Erwinia herbicola Eho13. Microbiology 140: 331-339.
    Wang, C.K., Chen, P.Y., Wang, H.M. & To, K.Y. (2006) Cosuppression of tobacco chalcone synthase using Petunia chalcone synthase construct results in white flowers. Bot. Studies 47: 71-82.
    Wang, H.M. & To, K.Y. (2004) Agrobacterium-mediated transformation in the high-value medicinal plant Echinacea purpurea. Plant Sci. 166: 1087-1096.
    Wang, X.D., Liu, C., Bronson, R.T., Smith, D.E., Krinsky, N.I. & Russell, M. (1999) Retinoid signaling and activator protein-1 expression in ferrets given beta-carotene supplements and exposed to tobacco smoke. J. Natl. Cancer Inst. 91: 60-66.
    Ye, X., Al-Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P. & Potrykus, I. (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303-305.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE