簡易檢索 / 詳目顯示

研究生: 黃韋智
Huang, Wei-Chih
論文名稱: 應用於遠距醫療攜帶式生醫訊號擷取系統之EEG/ECG低雜訊前端電路及類比心電訊號動作雜訊干擾偵測器
A Low Noise EEG /ECG Signal Readout Frond-End and An ECG Motion Artifact Analog Detector for Telemedicine Mobile Biomedical Signal Acquisition Systems
指導教授: 鄭桂忠
Tang, Kea-Tiong
口試委員: 洪浩喬
謝志成
鄭桂忠
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 105
中文關鍵詞: 低雜訊前端電路動作雜訊生醫訊號
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著目前醫療技術的進步,使社會漸漸轉型為高齡化人口結構,某些病狀或者慢性病所需要長時間並且能夠即時地監控人體各種生醫訊號的醫療儀器設備,其需求有日益增加的趨勢。這幾年來可以看到越來越多的文獻開始研究人體各類生醫訊號的特性以及各種應用於醫療上的系統電路,並且將其整合為適於人體的積體電路晶片而便於隨身攜帶的裝置。其中避免雜訊干擾而把感測到的微小振幅生醫訊號放大,是位於最前端低雜訊生醫訊號前端電路的主要功用。
    本研究為擷取腦波訊號與心電訊號低雜訊前端電路及類比心電訊號動作雜訊干擾偵測器,低雜訊生醫訊號前端電路採用擁有高共模互斥比特性的全差動電流平衡式儀表放大器來做低雜訊的設計,並且利用截波穩定技術來減小電路中的閃爍雜訊,並且對於腦波訊號與心電訊號兩者不同的振幅與頻寬,利用低轉導電容濾波器與可調增益放大器來調整適當的頻寬與振幅。非侵入式的心電訊號量測容易受到量測環境中的雜訊干擾,舉凡電源線、呼吸以及動作或肌肉造成的干擾均為雜訊來源。其中最難處理的則是動作雜訊。目前最常被用來處理動作雜訊的方法是利用數位調適性濾波器演算法來移除動作雜訊的干擾。本研究提出類比心電訊號動作雜訊干擾偵測器,其目的為藉由透過類比前端偵測動作雜訊干擾的發生,來減少後端數位處理器中調適性濾波器因不必要處理動作雜訊干擾而持續運作所需要的運算與功率消耗。另外,心電訊號動作雜訊干擾偵測器也能提供其監測期間資料的可用性和監測量測電極的接觸狀況之功用。
    本篇研究使用TSMC 90nm CMOS 標準製程實作。整個系統電路功率消耗為22.17 μW。低雜訊生醫訊號前端電路在EEG與ECG的頻寬範圍內,其輸入總等效雜訊分別為1.06 μVrms與1.64 μVrms,NEF為8.2,共模互斥比為107 dB,其結果顯示此電路適用於腦波與心電訊號之生醫訊號擷取系統。


    In modern clinical practice, monitoring of biomedical signals is a crucial and important part. The biomedical signals most commonly used in medical diagnoses include EEG, ECG and EMG, etc. Therefore, there is a growing demand for small-size portable biomedical signal acquisition systems to improve the patients’ quality of life.
    The low noise biomedical signal readout frond-end consists of a chopper current-balancing instrumentation amplifier (CCBIA), a small Gm-C low pass filter, and a programmable gain amplifier. The CCBIA utilizes the chopper stabilization to reduce the flicker noise and amplifiers the low amplitude biomedical signals. The common mode rejection ratio (CMRR) is also the important specification because there are Electromagnetic Interference (EMI) and Electrostatic Field Interference (EFI) when measuring biomedical signals. Behind the CCBIA, a low-pass filter is needed to reduce the out-of-band noise higher than the biomedical signal of interest, and the programmable gain amplifier is used to avoid the output signal to be saturated. The analog ECG motion artifact detector is proposed to save the power consumption of motion artifact reduction in DSP.
    The article is fabricated by TSMC 90nm CMOS process. The measurement results shows that the readout frond-end achieves 107dB CMRR, the gain and the bandwidth are tunable for EEG and ECG, integrated input-referred noises are only 1.06 μVrms and 1.64 μVrms within EEG and ECG signal bandwidth. The ECG motion artifact analog detector can detect the skin-electrode impedance variation and the ECG signal variation successfully. The total power consumption is 22.17 μW.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 viii 表目錄 xiii 第1章 緒論 1 1.1 研究前言 1 1.1.1 研究背景 1 1.1.2 生醫訊號簡介 2 1.2 相關研究發展 5 1.2.1 非植入式生醫訊號擷取裝置 5 1.2.2 植入式生醫訊號擷取裝置 6 1.2.3 生醫訊號量測電極 7 1.2.4 電極-皮膚層阻抗模型 9 1.2.5 動作雜訊干擾 (Motion Artifact) 10 1.2.6 動作雜訊干擾偵測器動機 10 1.3 設計規格 11 1.4 章節簡介 13 第2章 文獻回顧 14 2.1 低雜訊生醫訊號放大器 14 2.1.1 電阻回授式儀表放大器 14 2.1.2 電容回授式放大器 15 2.1.3 差動微分放大器 16 2.1.4 電流平衡式儀表放大器 17 2.2 動態開關雜訊消除技術 18 2.2.1 截波穩定技術 (Chopper Stabilization) 18 2.2.2 自動歸零(Auto-zeroing)技術 20 2.3 心電訊號動作雜訊干擾簡介 21 2.3.1 心電訊號動作雜訊干擾 21 2.3.2 心電訊號動作雜訊干擾消除 22 2.3.3 心電訊號動作雜訊干擾偵測 23 第3章 雜訊 24 3.1 雜訊簡介 24 3.2 熱雜訊(Thermal Noise) 25 3.3 閃爍雜訊(Flicker Noise) 26 3.4 散射雜訊(Shot Noise) 27 3.5 Random Telegraph Signal 雜訊 28 3.6 Generation-Recombination 雜訊 28 3.7 電磁干擾(EMI)與靜電場干擾(EFI) 29 3.8 雜訊分析工具-EKV Model 30 第4章 低雜訊生醫訊號前端電路與心電訊號動作雜訊干擾 偵測器之系統架構與設計流程 33 4.1 整體系統架構簡介 33 4.2 低雜訊生醫訊號前端電路 34 4.2.1 截波穩定技術(Chopper Stabilization) 35 4.2.2 低雜訊電流平衡式儀表放大器 38 4.2.3 低轉導電容低通濾波器 42 4.2.4 可變增益放大器 46 4.2.5 共模回授電路 50 4.3 類比心電訊號動作雜訊干擾偵測器 51 4.3.1 心電訊號動作雜訊干擾偵測原理 53 4.3.2 電極-皮膚介面阻抗訊號偵測區塊 53 4.3.3 心電訊號變化偵測區塊 56 第5章 電路模擬與佈局 60 5.1 Pre-Simulation 60 5.1.1 截波穩定電流平衡式儀表放大器模擬 60 5.1.2 低轉導值電容濾波器模擬 61 5.1.3 生醫訊號低雜訊前端電路模擬 62 5.2 電路佈局與考量 62 5.3 Post-Simulation 63 5.3.1 截波穩定電流平衡式儀表放大器模擬 63 5.3.2 低轉導值電容濾波器模擬 65 5.3.3 生醫訊號前端電路模擬 66 5.3.4 類比心電訊號動作雜訊干擾偵測器模擬 68 第6章 量測結果分析與討論 73 6.1 量測環境設置 73 6.2 生醫訊號前端電路 76 6.2.1 頻率響應 76 6.2.2 雜訊 78 6.2.3 電流平衡式儀表放大器共模互斥比 80 6.2.4 暫態響應 81 6.2.5 低雜訊生醫訊號前端電路量測結果 84 6.3 類比心電訊號動作雜訊干擾偵測器 84 6.3.1 心電訊號變化偵測電路 84 6.3.2 .電極-皮膚介面阻抗監測電路 88 6.4 心電訊號量測實驗 91 6.5 腦波訊號量測實驗 92 6.6 文獻比較表 97 6.7 量測結果討論總結 98 第7章 結論與未來展望 100 7.1 結論 100 7.2 未來展望 100 參考文獻 101

    [1] Hoi-Jun Yoo, Chris van Hoof, Bio-Medical CMOS ICs Integrated Circuits and Systems. Springer, 2011
    [2] E. T. McAdams, Encyclopedia of Medical Devices and Instrumentation. J. G. Webster, 2002
    [3] J. Ottenbacher, M. Kirst, L. Jatob´a, U. Großmann, and W. Stork, "An approach to reliable motion artifact detection for mobile long-term ECG monitoring systems using dry electrodes," ser. IFMBE Proceedings, vol. 18. Springer Berlin Heidelberg, November 2007, pp. 440–443.
    [4] D. Buxi, T. Berset, M. Hijdra, M. Tutelaers, D. Geng, J. Hulzink, M. van Noorloos, I. Romero, T. Torfs, and N. Van Helleputte, "Wireless 3-lead ECG system with on-board digital signal processing for ambulatory monitoring," in Biomedical Circuits and Systems Conference (BioCAS), 2012, pp. 308-311.
    [5] M. R. Nuwer et al., "IFCN standards for digital recording of clinical EEG," Electroencephalogr. Clin. Neurophysiol., vol. 106, no. 3, pp.259–261, Mar. 1998.
    [6] S. Shrestha, T. Torfs, H. Hyejung Kim, R. Yazicioglu, I. Romero,D. Buxi, T. Berset, and M. Altini, “Optimized R peak detection algorithm for ultralow power ECG systems,” in Biomedical Circuits and Systems Conference (BioCAS), Nov.2011, pp. 225–228.
    [7] Reid R. Harrison and Cameron Charles, ” A Low-Power Low-Noise CMOS Amplifier for Neural Recording Applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, June. 2003
    [8] K. A. Ng and P. K. Chan, "A CMOS analog front-end IC for portable EEG/ECG monitoring applications," IEEE Trans. Circuits Syst.-I: Regular Papers, vol. 52, no. 11, pp. 2335-2347, Nov. 2005.
    [9]H. Alzaher and M. Ismail, "A CMOS fully balanced differential difference amplifier and its applications," IEEE Trans. Circuit Syst. II, Analog Digit. Signal Process., vol. 48, no. 6, pp. 614–620, Jun. 2001.
    [10]Y. Tao, Y. Haigang, Y. Quan, and C. Guoping, "Noise Analysis and Simulation of Chopper Amplifier," IEEE Asia Pacific Conference in Circuits and Systems, 2006, pp. 167-170.

    [11] T. Denison, K. Consoer, W. Santa, A. T. Avestruz, J. Cooley, and A. Kelly, "A 2μW 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials, " IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2934–2945, Dec. 2007.
    [12] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001
    [13] R.Martins, S.Selberherr, and F.A. Vaz, "A CMOS IC for Portable EEG Acquisition Systems," IEEE Trans, on Inst. and Meas., vol. 47, iss. 5, pp. 1191-1196, Oct. 1998.
    [14] MR Neuman, Medical instrumentation: application and design, New York:
    Wiley, 1988
    [15] O. Jorg, K. Malte, J. Luciana, H. Michal, G. Ulrich, and S. Wilhelm, "Reliable motion artifact detection for ECG monitoring systems with dry electrodes, " in Proc. IEEE Engineering in Medicine and Biology Soc. Conf., Aug. 20–25, 2008, pp. 1695–1698.
    [16] D. A. Tong, K. A. Bartels, and K. S. Honeyager, "Adaptive reduction of motion artifact in the electrocardiogram, " in Proc. Annu. Int. Conf. Engineering in Medicine and Biology Soc.—Pt. 2, vol. 2, 2002, pp.1403–1404.
    [17] O. Jorg, J. Luciana, U. Großmann, S. Wilhelm, K.D Müller-Glaser, "ECG electrodes for a context-aware cardiac permanent monitoring system, " IFMBE Proceedings Volume 14, World Congress on Medical Physics and Biomedical Engineering, 2006
    [18] F. N. Hooge, "1/f noise sources," IEEE Trans. Electron Devices, vol.41, pp. 1926–1935, Nov. 1994.
    [19] E. P. Vandamme, L. K. J. Vandamme, C. Claeys, E. Simoen, and
    R. J.Schreutelkamp, "Impact of silicidation on the excess noise behavior of MOS transistors," Solid-State Electron., vol. 38, pp. 1893–1897, Nov.1995.
    [20] K.K.Hung, P.K.Ko, C.Hu, Y.C.Cheng, "A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors," IEEE Transactions on Electron Devices, vol.37, pp.654-665, March. 1990
    [21] C. C. Enz, F. Krummenacher, and E. A. Vittoz, "An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications," Analog Integrated Circuits and Signal Processing, vol. 8, pp.83–114, 1995.
    [22] E.A. Vittoz, C.C. Enz, Sub-threshold Design for Ultra Low-Power Systems, Springer, 2006
    [23] R. F. Yazicioglu, P. Merken and C. Van Hoof ,"Effect of electrode offset on the CMRR of current balancing instrumentation amplifiers", Ph.D. Res. Microelec. Elec. (PRIME), vol. 1, pp.35 2005
    [24] P. A. Dal Fabbro "An integrated CMOS instrumentation amplifier with improved CMRR", Proc. IEEE 15th Symp. Integr. Circuits Syst. Des., pp.57, 2002
    [25] R. Martins, S. Selberherr, and F. A. Vaz, "A CMOS IC for Portable EEG Acquisition Systems," IEEE Trans, on Inst. and Meas., vol. 47, iss. 5, pp. 1191-1196, Oct. 1998.
    [26] S. Solís-Bustos, J. Silva-Martínez, F. Maloberti, and E. Sánchez-Sinencio, "A 60 db dynamic-range CMOS sixth-order 2.4 Hz lowpass filter for medical applications," IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. Conf., vol. 47, pp. 1391–1398, Dec. 2000.
    [27] Shuenn-Yuh Lee, Chih-Jen Cheng, "Systematic Design and Modeling of a OTA-C Filter for Portable ECG Detection," IEEE Biomedical Circuits and Systems Conference, 2009, pp. 53-64
    [28] Xinbo Qian, Yong Ping Xu, and Xiaoping Li, "A CMOS Continuous-Time Low-Pass Notch Filter for EEG Systems," Analog Integrated Circuits and Signal Processing, 44, 231–238, 2005
    [29]L. Luh, J. Choma, and J. Draper, "A continuous-time common-mode feedback circuit (CMFB) for high-impedance current-mode applications," IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol.47, no. 4, pp. 363–369, Apr. 2000
    [30] De Talhouet, H., and Webster, J. G., "The Origin of Skin-Stretch- Caused Motion Artifacts under Electrodes," Physiological Measurement, Vol. 17, pp. 81-93, 1996.
    [31] Wiese, S.R., Anheier, P., Connemara, R.D., Mollner, A.T., Neils, T.F., Kahn, J.A., and Webster, J.G., "Electrocardiographic Motion Artifact Versus Electrode Impedance," IEEE Transactions on Biomedical Engineering, Vol. 52, No. 1, pp. 136 – 139, 2005.
    [32] T. Degen and H. Jackel, "Continuous monitoring of electrode–skin impedance mismatch during bioelectric recordings, " IEEE Transactions on Biomedical Engineering, vol. 55, no. 6, pp. 1711–1715, 2008.
    [33] MIT-BIH Biomedical Signal Open Source (http://www.physionet.org/physiobank/database/)
    [34] L. Chin-Teng, K. Li-Wei, C. Jin-Chern, D. Jeng-Ren, H. Ruey-Song, L.Sheng-Fu, C. Tzai-Wen, and J. Tzyy-Ping, "Noninvasive Neural Prostheses Using Mobile and Wireless EEG," Proceedings of the IEEE, vol. 96, pp. 1167-1183, 2008.
    [35] Salvo, P.; Raedt, R.; Carrette, E.; Schaubroeck, D.; Vanfleteren, J.; Cardon.L, "A 3D printed dry electrode for ECG/EEG recording, " Sens. Actuators A Phys. 2012, 174, 96–102.
    [36] N. Verma et al., "A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System," IEEE J. Solid-State Circuits, pp. 804-816, April 2010.
    [37] Yazicioglu. R.F., Sunyoung Kim, Torfs. T., Hyejung Kim; Van Hoof, C., "A 30 μW Analog Signal Processor ASIC for Portable Biopotential Signal Monitoring, " IEEE J. Solid-State Circuits, vol. 46, no. 5, pp.209 -223 ,2010
    [38] X. D. Zou , X. Y. Xu , L. B. Yao and Y. Lian, "A 1 V 450 nW fully integrated programmable biomedical sensor interface system," IEEE J. Solid-State Circuits, vol. 44, no. 4, pp.1067 -1077 ,2009
    [39] R. F. Yazicioglu , P. Merken , R. Puers and C. Van Hoof , "A 60 μW 60 nV/√Hz Readout Front-End for Portable Biopotential Acquisition Systems," IEEE J. Solid-State Circuits, vol. 42, no. 5, pp.1100 -1110,2007
    [40] R. F. Yazicioglu, P. Merken, R. Puers, and C. V. Hoof, "Low-power low-noise 8-channel EEG front-end ASIC for ambulatory acquisition systems," European Solid-State Circuits Conf. (ESSCIRC), 2006, pp. 247-250.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE