簡易檢索 / 詳目顯示

研究生: 黃郁晴
Huang, Yu-Ching
論文名稱: 基於Instagram的圖像,文本和行為數據預測憂鬱傾向
Predicting Depression Tendency Based on Image, Text and Behavior Data from Instagram
指導教授: 陳良弼
Chen, Arbee L. P.
口試委員: 柯佳伶
Koh, Jia-Ling
曾新穆
Tseng, S. Vincent
學位類別: 碩士
Master
系所名稱:
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 42
中文關鍵詞: 憂鬱症偵測社群媒體深度學習心理健康
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 憂鬱症是一種常見但嚴重的精神疾病。它被歸類為情緒障礙,這意味著它的特點是消極的思想和情緒。隨著網路科技越來越發達,越來越多的人發布他們的生活故事,並在社群媒體上表達及抒發自己的情感。經研讀諸多文獻發現,可以從社群媒體的巨量與多元內容萃取並引導出特定表徵和預測憂鬱症的方法。它已被研究人員廣泛用於研究心理健康問題。但是,現有的大部分研究都集中在社群媒體的文本數據上。很少有研究同時考慮文本和圖像數據。在這項研究中,我們的目標是通過分析用戶在Instagram上的發文。利用發文中的文本、圖像和行為來預測一個人憂鬱傾向。我們採用有效的數據收集機制來收集憂鬱症和非憂鬱症使用者。接下來,我們從圖像,文本和行為中提取三組特徵,以構建我們預測的深度學習模型。我們研究了利用社群媒體發文作為信號來理解憂鬱症的潛力。我們的實驗結果表明,該模型能夠識別具有憂鬱傾向的用戶,F-score為82.3%。它可以極大地促進早期篩檢和檢測憂鬱症的開發工具。


    Depression is common but serious mental disorder. It is classified as a mood disorder, which means that it is characterized by negative thoughts and emotions. With the development of the Internet technology, more and more people post their life story and express their emotion on social media. Social media can provide a way to characterize and predict depression. It has been widely utilized by researchers to study mental health issue. However, most of the existing study focus on textual data from social media. Few studies considering both text and image data. In this study, we aim to predict one’s depression tendency by analyzing image, text and behavior of their posts on Instagram. We employ an effective data collection mechanism to collect depression and non-depressive user accounts. Next, we extract three sets of features from image, text and behavior to build our predictive deep learning model. We examine the potential for leveraging social media postings as a signal in understanding depression. Our experiment results demonstrate that the proposed model could recognize users who have depression tendency with an F-1 score of 82.3%. It could greatly contribute to the developing of tools for early screening and detection of depression.

    Acknowledgement......i 摘要......iii Abstract......iv Table of Contents......v List of Figures......vii List of Tables......viii 1. Introduction......1 2. Related Work......5 3. Task Description......9 4. Method......11 4.1 Data Collection......12 4.2 Data Pre-processing......14 4.3 Feature Extraction......14 4.4 Prediction model......18 5. Experiments......21 5.1 Dataset......21 5.2 Normalization Process......22 5.3 Parameter Tuning......23 5.4 Evaluation of Image Feature Extraction Model......25 5.5 Model and Feature Analysis......28 5.6 Performance of Model......29 5.7 Depression Degree of Post......33 6. Conclusion......35 Reference......36 Appendixes......40

    [1] "Depression Fact Sheet," World Health Organization, http://www.who.int/mediacentre/factsheets/fs369/en/.
    [2] Andalibi, Nazanin, Pinar Öztürk, and Andrea Forte. "Sensitive Self-disclosures, Responses, and Social Support on Instagram: The Case of# Depression." CSCW. 2017.
    [3] De Choudhury, Munmun, and Sushovan De. "Mental Health Discourse on reddit: Self-Disclosure, Social Support, and Anonymity." ICWSM. 2014.
    [4] Manikonda, Lydia, and Munmun De Choudhury. "Modeling and understanding visual attributes of mental health disclosures in social media." Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, 2017.
    [5] Xuetong Chen, Martin Sykora, Thomas Jackson, Suzanne Elayan, and Fehmidah Munir. 2018. Tweeting Your Mental Health: an Exploration of Different Classifiers and Features with Emotional Signals in Identifying Mental Health Conditions. In Proceedings of the 51st Hawaii International Conference on System Sciences
    [6] De Choudhury M, Counts S, Horvitz E (2013) Predicting postpartum changes in emotion and behavior via social media. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New York, pp 3267-3276. doi:10.1145/2470654.2466447
    [7] De Choudhury M, Counts S, Horvitz EJ, Hoff A (2014) Characterizing and predicting postpartum depression from shared Facebook data. In: Proceedings of the 17th ACM conference on computer supported cooperative work & social computing, ACM, New York, pp 626-638. doi:10.1145/2531602.2531675
    [8] De Choudhury M, Gamon M, Counts S, Horvitz E (2013) Predicting depression via social media. In: Seventh international AAAI conference on weblogs and social media
    [9] Katikalapudi R, Chellappan S, Montgomery F, Wunsch D, Lutzen K (2012) Associating Internet usage with depressive behavior among college students. IEEE Technol Soc Mag 31(4):73-80. doi:10.1109/MTS.2012.2225462
    [10] Moreno MA, Jelenchick LA, Egan KG, Cox E, Young H, Gannon KE, Becker T (2011) Feeling bad on Facebook: depression disclosures by college students on a social networking site. Depress Anxiety 28(6):447-455. doi:10.1002/da.20805
    [11] Coppersmith G, Harman C, Dredze M (2014) Measuring post traumatic stress disorder in Twitter. In: Eighth international AAAI conference on weblogs and social media
    [12] De Choudhury M, Kiciman E, Dredze M, Coppersmith G, Kumar M (2016) Discovering shifts to suicidal ideation from mental health content in social media. In: Proceedings of the 2016 CHI conference on human factors in computing systems. ACM, New York, pp 2098-2110. doi:10.1145/2858036.2858207
    [13] Christakis NA, Fowler JH (2010) Social network sensors for early detection of contagious outbreaks. PLoS ONE 5(9):e12948. doi:10.1371/journal.pone.0012948
    [14] Schmidt CW (2012) Trending now: using social media to predict and track disease outbreaks. Environ Health Perspect 120(1):a30-a33. doi:10.1289/ehp.120-a30
    [15] Paparrizos J, White RW, Horvitz E (2016) Screening for pancreatic adenocarcinoma using signals from web search logs: feasibility study and results J Oncol Pract 12(8):737-744. doi:10.1200/JOP.2015.010504
    [16] Moreno M, Christakis D, Egan K, Brockman L, Becker T (2012) Associations between displayed alcohol references on Facebook and problem drinking among college students. Arch Pediatr Adolesc Med 166(2):157-163
    [17] Park, Minsu, Chiyoung Cha, and Meeyoung Cha. "Depressive moods of users portrayed in Twitter." Proceedings of the ACM SIGKDD Workshop on healthcare informatics (HI-KDD). Vol. 2012. New York, NY: ACM, 2012.
    [18] Instagram (2016) Instagram press release. Available at https://www.instagram.com/press/. Accessed July 26, 2016
    [19] Min Yen Wu, Chih-Ya Shen, En Tzu Wang and Arbee L.P. Chen. A Deep Architecture for Depression Detection using Posting, Behavior, and Living Environment Data. Journal of Intelligent Information Systems
    [20] Chen, Xuetong, et al. "What about Mood Swings: Identifying Depression on Twitter with Temporal Measures of Emotions." Companion of the The Web Conference 2018 on The Web Conference 2018. International World Wide Web Conferences Steering Committee, 2018.
    [21] Mitchell, Alex J., Amol Vaze, and Sanjay Rao. "Clinical diagnosis of depression in primary care: a meta-analysis." The Lancet, 374.9690 (2009): 609-619.
    [22] Kang, Keumhee, Chanhee Yoon, and Eun Yi Kim. "Identifying depressive users in Twitter using multimodal analysis." Big Data and Smart Computing (BigComp), 2016 International Conference on. IEEE, 2016.
    [23] Reece, A. G., & Danforth, C. M. (2017). Instagram photos reveal predictive markers of depression, EPJ Data Science, 6(1) (2017): 15.
    [24] N. Andalibi, P. Ozturk, and A. Forte, “Depression-related Imagery on Instagram,” ACM Conference Companion on Computer Supported Cooperative Work & Social Computing, pp. 231-234, 2015
    [25] Thrun, Sebastian. "Is learning the n-th thing any easier than learning the first?" Advances in neural information processing systems. 1996.
    [26] Yosinski, Jason, et al. "How transferable are features in deep neural networks?." Advances in neural information processing systems. 2014.
    [27] Oquab, Maxime, et al. "Learning and transferring mid-level image representations using convolutional neural networks." Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE, 2014.
    [28] Munmun De Choudhury, Emre Kiciman, Mark Dredze, Glen Coppersmith, and Mrinal Kumar. 2016. Discovering Shifts to Suicidal Ideation from Mental Health Content in Social Media. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI ’16), 2098–2110. http://doi.org/10.1145/2858036.2858207
    [29] J. Sun, “Jieba’Chinese word segmentation tool,” https://github.com/fxsjy/jieba.
    [30] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” International Conference on Learning Representations Workshop, 2013.
    [31] Al-Mosaiwi, Mohammed, and Tom Johnstone. "In an absolute state: Elevated use of absolutist words is a marker specific to anxiety, depression, and suicidal ideation." Clinical Psychological Science (2018): 2167702617747074.
    [32] N. Ramirez-Esparza, C. K. Chung, E. Kacewicz, and J. W. Pennebaker, “The Psychology of Word Use in Depression Forums in English and in Spanish: Texting Two Text Analytic Approaches,” AAAI Conference on Weblogs and Social Media (ICWSM), 2008
    [33] Nutt, David, Sue Wilson, and Louise Paterson. "Sleep disorders as core symptoms of depression." Dialogues in clinical neuroscience 10.3 (2008): 329.
    [34] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE.
    [35] J. Grus, “Data science from scratch: First principles with Python,” O'Reilly Media, Inc., 2015.
    [36] Paul, Michael J., and Mark Dredze. "You are what you Tweet: Analyzing Twitter for public health." Icwsm 20 (2011): 265-272.
    [37] TCDRUGINFO, http://www.tcdruginfo.com/index.asp

    QR CODE