簡易檢索 / 詳目顯示

研究生: 高天鴻
Kao, Tien-Hong
論文名稱: 以氮氧化鋁介面層之P型鐵電電晶體提升可靠度及應用於類神經網路
P-type FeFET Utilizing AlON Interfacial Layer with Better Reliability and Its Applications to Neural Network
指導教授: 巫勇賢
Wu, Yung-Hsien
口試委員: 吳永俊
Wu, Yung-Chun
唐英瓚
Tang, Ying-Tsang
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 74
中文關鍵詞: 鐵電電晶體氧化鋯鉿深度學習網路非揮發性記憶體脈衝依賴時序可塑性
外文關鍵詞: FeFET, HfZrO2, DNN, NVM, STDP
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2008年時,IBM提出儲存級記憶體的概念,從那時起開始有一些新型態記憶體問世,這些記憶體同時兼具了操作速度快及非揮發的特性,有效縮減了以往揮發性記憶體及傳統非揮發性記憶體之間的差距。在這之中,鐵電電晶體展現出讀取非破壞性、高開關比以及相容於CMOS製程等優勢,在儲存級記憶體中佔有一席之地。
    現今的鐵電電晶體討論主要都是以n型為主,由於p型在先天上具有較小的記憶視窗,因此鮮少被人討論,不過在特定的應用層面中p型鐵電電晶體仍是不可或缺的,因此需要對p型鐵電電晶體做更深入的研究,以降低n型及p型之間的差異。本研究在鐵電層及矽基板之間沉積一層氮氧化鋁介面層,提升p型鐵電電晶體的記憶視窗到將近2V的等級,同時也在量測時使用脈波量測法改善不理想的讀取破壞問題。p型鐵電電晶體因為電荷捕捉效應能被抑制,因此相較於n型具有較好的耐用度及較輕微的印記效應。
    除了基礎的特性討論之外,本研究也討論了突觸元件的應用。鐵電電晶體相較於其他種類的突觸元件,具有較多的狀態數、較高的Gmax/Gmin比例,以及較好的線性度表現。本研究討論了n型及p型鐵電電晶體的長程可塑性,而p型鐵電電晶體更是在手寫辨識上展現出將近90%的辨識率。在本研究的最後也對n型及p型鐵電電晶體測試了建構在脈衝神經網路上的脈衝依賴時序可塑性,而這也代表鐵電電晶體在下一個世代的神經型態運算中非常具有潛力。


    In 2008, IBM Research Center proposed the concept of storage class memory (SCM). From then on, several emerging memories have been proposed. These memories have attracted intensive attention due to the high speed operation and non-volatility, effectively shrinking the gap between volatile memories and traditional non-volatile memories. Among these SCMs, ferroelectric field-effect transistors (FeFETs) show the competitive advantages in terms of non-destructive reading operation, high on/off ratio, and the compatibility of CMOS process, becoming the promising candidate for future SCM.
    Currently most researches on FeFET memory concentrate on n-channel devices in the literature because p-channel FeFETs are believed to have a smaller memory window (MW). However, p-channel FeFETs are indispensable in some circuit applications and therefore it is a prerequisite to study the performance of p-channel FeFETs in more detail to reduce the difference between p- and n-channel FeFETs. In this thesis, depositing an AlON interfacial layer between the ferroelectric film and Si substrate is proposed in p-channel FeFETs to enlarge the MW as large as 2 V which is measured by pulsed Id-Vg method to void possible disturb issue. P-channel FeFETs also exhibit superior characteristics to the n-channel counterparts in terms of better endurance and smaller imprint due to suppressed charge trapping effect.
    Besides basic characterizations on FeFET memory performance, the applications to synaptic devices are also discussed in the thesis because FeFETs possess the capability to display more conductance states, higher Gmax/Gmin ratio, and better linearity than other emerging memory technologies. Long-term plasticity of n- and p-channel FeFETs are measured and the recognition accuracy of ~90% in handwritten system is achieved by p-channel FeFETs. Finally, spike timing dependent plasticity (STDP) which is a kind of training method based on spiking neural network (SNN) is also tested for FeFETs and the results demonstrate that FeFETs hold the potential for next-generation neuromorphic computing.

    摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 vii 表目錄 xi 第一章 緒論 1 1-1 鐵電材料 1 1-2 儲存級記憶體 (Storage Class Memory, SCM) 2 1-3 鐵電電晶體 (Ferroelectric FET, FeFET) 4 1-4 類神經網路應用 5 第二章 文獻回顧 15 2-1 讀取破壞問題 15 2-2 影響記憶視窗的機制 16 2-3 造成n型及p型FeFET的差異 18 2-4 FeFET用於深度學習網路(Deep Neural Network, DNN) 19 第三章 實驗動機及製程步驟 33 3-1 實驗動機 33 3-2 製程步驟 34 第四章 實驗結果與討論 42 4-1 鐵電電晶體Id-Vg讀取方式 42 4-2 n-及p-鐵電電晶體可靠度分析 43 4-3 鐵電電晶體應用於類神經網路 46 第五章 結論與未來展望 68 References 70

    [1] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U.Böttger, "Ferroelectricity in hafnium oxide thin films," Applied Physics Letters, vol. 99, no. 10, p. 102903, 2011.
    [2] T. Ali, P. Polakowski, T. Büttner, T. Kämpfe, M. Rudolph, B. Pätzold, R. Hoffmann, M. Czernohorsky, K. Kühnel,P. Steinke, L.M. Eng, and K. Seidel, "Principles and challenges for binary oxide based ferroelectric memory FeFET," in 2019 IEEE International Memory Workshop (IMW), pp. 1-4, 2019.
    [3] J. Müller, T. S. Böscke, D. Bräuhaus, U. Schröder, U.Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, and L. Frey, "Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications," Applied Physics Letters, vol. 99, no. 11, p. 112901, 2011.
    [4] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U.Böttger, L. Frey, and T. Mikolajick, "Ferroelectricity in simple binary ZrO2 and HfO2," Nano Letters, vol. 12, no. 8, pp. 4318-4323, 2012.
    [5] R. F. Freitas and W. W. Wilcke, "Storage-class memory: the next storage system technology," in IBM Journal of Research and Development, vol. 52, no. 4.5, pp. 439-447, 2008.
    [6] H. T. Lue, C. J. Wu, T. Y. Tseng, "Device modeling of ferroelectric memory field-effect transistor (FeMFET)," IEEE Transactions on Electron Devices, vol. 49, no. 10, pp. 1790-1798, 2002
    [7] M. Jerry, S. Dutta, A. Kazemi, K. Ni, J. Zhang, P. Y. Chen, P. Sharma, S. Yu, X. S. Hu, M. Niemier, and S. Datta, "A ferroelectric field effect transistor based synaptic weight cell," Journal of Physics D: Applied Physics, vol. 51, no. 43, p. 434001, 2018.
    [8] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, 2015.
    [9] H. Mulaosmanovic, S. Dünkel, J. Müller, M. Trentzsch, S. Beyer, E. T. Breyer, T. Mikolajick, and S. Slesazeck, "Impact of read operation on the performance of HfO2-based ferroelectric FETs," IEEE Electron Device Letters, vol. 41, no. 9, pp. 1420-1423, 2020.
    [10] K. Ni, P. Sharma, J. Zhang, M. Jerry, J. A. Smith, K. Tapily, R. Clark, S. Mahapatra, and S. Datta, "Critical role of interlayer in Hf0.5Zr0.5O2 ferroelectric FET nonvolatile memory performance," IEEE Transactions on Electron Devices, vol. 65, no.6, pp.2461-2469, 2018.
    [11] N. Gong, and T. P. Ma, "Why is FE-HfO2 more suitable than PZT or SBT for scaled nonvolatile 1-T memory cell? a retention perspective," IEEE Electron Device Letters, vol. 37, no. 9, pp.1123-1126, 2016.
    [12] T. P. Ma, and J. P. Han, "Why is nonvolatile ferroelectric memory field-effect transistor still elusive," IEEE Electron Device Letters, vol.23, no. 7, pp. 386-388, 2002.
    [13] N. Gong, and T. P. Ma, "A study of endurance issues in HfO2-based ferroelectric field effect transistor: charge trapping and trap generation," IEEE Electron Device Letters, vol. 39, no. 1, pp.15-18, 2018.
    [14] E. Yurchuk, J. Müller, S. Müller, J. Paul, M. Pešić, R. v. Bentum, U. Schroeder, and T. Mikolajick, "Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories," IEEE Transactions on Electron Devices, vol. 63, no. 9, pp.3501-3507, 2016.
    [15] C. Y. Chan, K. Y. Chen, H.K. Peng, and Y. H. Wu, "FeFET memory featuring large memory window and robust endurance of long-pulse cycling by interface engineering using high-k AlON," in 2020 IEEE Symposium on VLSI Technology, pp.1-2, 2020.
    [16] K. Toprasertpong, Z. Y. Lin, T. E. Lee, M. Takenaka, and S. Takagi, "Asymmetric polarization response of electrons and holes in Si FeFETs: demonstration of absolute polarization hysteresis loop and inversion hole density over 2×1013 cm-2," in 2020 IEEE Symposium on VLSI Technology, pp.1-2, 2020.
    [17] K. Toprasertpong, M. Takenaka, and S. Takagi, "Direct observation of interface charge behaviors in FeFET by quasi-static split C-V and hall techniques: revealing FeFET operation," in 2019 IEEE International Electron Devices Meeting, pp. 23.7.1-23.7.4, 2019.
    [18] M. Lederer, F. Müller, K. Kühnel, R. Olivo, K. Mertens, M. Trentzsch, S. Dünkel, J. Müller, S. Beyer, K. Seidel, T. Kämpfe, and L. M. Eng, "Intergration of hafnium oxide on epitaxial SiGe for p-type ferroelectric FET application," IEEE Electron Device Letters, vol. 41, no. 12, pp.1762-1765, 2020.
    [19] S. V. Vandebroek, E. F. Crabbé, B. S. Meyerson, D. L. Harame, P. J. Restle, J. M. C. Stork, and J. B. Johnson, "SiGe-channel heterojunction p-MOSFET’s," IEEE Transactions on Electron Devices, vol. 41, no. 1, pp.90-101, 1994.
    [20] K. Y. Chen, Y. H. Huang, R. W. Kao, Y. X. Lin, and Y. H. Wu, "Dependence of reliability of ferroelectric HfZrOx on epitaxial SiGe film with various Ge content," in 2018 IEEE Symposium on VLSI Technology, pp.119-120, 2018.
    [21] M. Jerry, P. Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and S. Datta, "Ferroelectric FET analog synapse for acceleration of deep neural network training," in 2017 IEEE International Electron Devices Meeting, pp. 6.2.1-6.2.4, 2017.
    [22] J. Woo, K. Moon, J. Song, S. Lee, M. Kwak, J. Park, and H. Hwang, "Improved synaptic behavior under identical pulses using AlOx/HfO2 bilayer RRAM array for neuromorphic systems," IEEE Electron Device Letters, vol. 37, no. 8, pp.994-997, 2016.
    [23] L. Gao, I. T. Wang, P. Y. Chen, S. Vrudhula, J. S. Seo, Y. Cao, T. H. Hou, and S. Yu, "Fully parallel write/read in resistive synaptic array for accelerating on-chip learning," Nanotechnology, vol. 26, no.45, p. 455204, 2015.
    [24] N. H. Van, J. H. Lee, D. Whang, and D. J. Kang, "Ultralow-power non-volatile memory cells based on P(VDF-TrFE) ferroelectric-gate CMOS silicon nanowire channel field-effect transistors," Nanoscale, vol. 7, pp. 11660-11666, 2015
    [25] E. T. Breyer and S. Slesazeck, "Ferroelectric devices for logic in memory," in Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices, Elsevier, pp. 495–513, 2019.
    [26] D. J. Dimaria and J. H. Stathis, "Anode hole injection, defect generation, and breakdown in ultrathin silicon dioxide films," Journal of Applied Physics, vol. 89, no. 9, pp. 5015-5024, 2001.
    [27] J. Bouaziz, P. R. Romeo, N. Baboux, and B. Vilquin, "Imprint issue during retention tests for HfO2-based FRAM: An industrial challenge?," Applied Physics Letters, vol. 118, no. 8, p. 082901, 2021.
    [28] Y. Higashi, N. Ronchi, B. Kaczer, K. Banerjee, S. R. C. McMitchell, B. J. O’Sullivan, S. Clima, A. Minj, U. Celano, L. D. Piazza, M. Suzuki, D. Linten, and J. V. Houdt, "Impact of charge trapping on imprint and its recovery in HfO2 based FeFET," in 2019 IEEE International Electron Devices Meeting, pp. 15.6.1-15.6.4, 2019.
    [29] Y. Cao, Y. Chen, and D. Khosla, "Spiking deep convolutional neural networks for energy-efficient object recognition," International Journal of Computer Vision, vol. 113, no. 1, pp. 54-66, 2015.
    [30] N. V. Prudnikov, D. A. Lapkin, A. V. Emelyanov, A. A. Minnekhanov, Y. N. Malakhova, S. N. Chvalun, V. A. Demin, and V. V. Erokhin, "Associative STDP-like learning of neuromorphic circuits based on polyaniline memristive microdevices," Journal of Physics D: Applied Physics, vol. 53, no. 41, p. 414001, 2020.
    [31] G. Koch, V. Ponzo, F. D. Lorenzo, C. Caltagirone, and D. Veniero, "Hebbian and anti-Hebbian spike-timing-dependent plasticity of human cortico-cortical connections," Journal of Neuroscience, vol. 33, no. 23, pp. 9725-9733, 2013.
    [32] Y. C. Chiu, C. H. Cheng, C. Y. Chang, Y. T. Tang, and M. C. Chen, "Investigation of strain-induced phase transformation in ferroelectric transistor using metal-nitride gate electrode," Physical Status Solidi Rapid Research Letters, vol. 11, no. 3, p. 1600368, 2017.

    QR CODE