簡易檢索 / 詳目顯示

研究生: 方容瑩
論文名稱: 以鋁氮化鎵/氮化鎵高電子遷移率電晶體進行極化液體黏度感測
Viscosity-dependent drain current noise of AlGaN/GaN high electron mobility transistor in polar liquids
指導教授: 王玉麟
口試委員: 王禎翰
鄭暉騰
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 36
中文關鍵詞: 鋁氮化鎵/氮化鎵高電子遷移率電晶體黏度波動
外文關鍵詞: fluctuation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對未開閘極之鋁氮化鎵/氮化鎵高電子遷移率電晶體 (AlGaN/GaN high electron mobility transistors, HEMTs) 在汲極-源極電壓為0.5伏特下,進行於不同流體中的汲極電流波動量測。閘極區域上鍍有閘極金屬之高電子遷移率電晶體,於去離子水中的汲極電流有很好的穩定性;然而,閘極區域上未鍍有閘極金屬之高電子遷移率電晶體,於去離子水中的汲極電流則穩定性不佳且電流波動很大。汲極電流取自流體的即時量測並以標準偏差計算電流波動值,其中流體包含空氣、去離子水、乙醇、二甲基亞碸、乙二醇、1,2-丁二醇和丙三醇。在室溫下,我們發現未鍍有閘極金屬之高電子遷移率電晶體的汲極電流波動值與液體的偶極矩和黏度有相關,液體的黏度越大,其汲極電流波動值越小。液體黏度與汲極電流值的相關性歸因於液體分子的布朗運動(Brownian motion),此分子運動導致閘極區域的表面偶極產生變動。本研究發現高電子遷移率電晶體於流體中,導致汲極電流波動的因素,此結果顯現鋁氮化鎵/氮化鎵高電子遷移率電晶體可作為用來量測某一範圍之液體黏度的感測器。


    The drain current fluctuation of ungated AlGaN/GaN high electron mobility transistors (HEMTs) measured in different fluids at a drain-source voltage of 0.5 V was investigated. The HEMTs with metal on the gate region showed good current stability in deionized water, while a large fluctuation in drain current was observed for HEMTs without gate metals. The fluctuation in drain current for the HEMTs without gate metals were observed and calculated as standard deviation from a real-time measurement in air, deionized water, ethanol, dimethyl sulfoxide (DMSO), ethylene glycol, 1,2-butanediol, and glycerol. At room temperature, the fluctuation in drain current for the HEMTs without gate metals was found to be relevant to the dipole moment and the viscosity of the liquids. A liquid with a larger viscosity showed a smaller fluctuation in the drain current. The viscosity-dependent fluctuation of the drain current was ascribed to the Brownian motions of the liquid molecules, which induced a variation in the surface dipole of the gate region. This study uncovers the causes of the fluctuation in drain current of HEMTs in fluids. The results show that the AlGaN/GaN HEMTs may be used as sensors to measure the viscosity of liquids within a certain range of viscosity.

    Chinese abstract.......................................................................................................................iii English abstract.........................................................................................................................iv List of Figures.........................................................................................................................vii List of Tables..........................................................................................................................viii Chapter 1 Introduction...............................................................................................................1 1.1 Motivation....................................................................................................................1 1.2 Background..................................................................................................................1 Chapter 2 Literature Review.......................................................................................................3 2.1 Applications of AlGaN/GaN HEMTs sensors..............................................................3 2.1.1 Gas sensing............................................................................................................3 2.1.2 Mercury ions sensing............................................................................................7 2.1.3 pH sensing.............................................................................................................9 2.1.4 Botulinum toxin sensing......................................................................................11 2.1.5 DNA sensing.......................................................................................................13 2.1.6 Temperature and Pressure sensing.......................................................................14 2.2 AlGaN/GaN heterostructure field effect transistors for polar liquid sensing.............15 2.3 The viscosity dependence of Brownian motion of microspheres...............................16 Chapter 3 Materials and Methods............................................................................................19 3.1 Fabrication of AlGaN/GaN HEMTs sensors..............................................................19 3.2 Sensor measurements.................................................................................................20 Chapter 4 Results and Discussions...........................................................................................22 4.1 Temperature drifting effect of AlGaN/GaN HEMTs sensors.....................................22 4.2 Temperature dependence of AlGaN/GaN HEMTs sensors........................................23 4.3 Real-time measurements of AlGaN/GaN HEMTs sensors.........................................26 4.4 Dipole moment and viscosity of each fluid versus the fluctuation of drain current for AlGaN/GaN HEMTs sensors.....................................................................................28 Chapter 5 Conclusions.............................................................................................................32 Chapter 6 References................................................................................................................33

    1. Steinhoff, G., M. Hermann, et al. (2003). "pH response of GaN surfaces and its application for pH-sensitive field-effect transistors." Applied Physics Letters 83(1): 177-179.
    2. Kang, B. S., H. T. Wang, et al. (2007). "Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN∕GaN high electron mobility transistors." Applied Physics Letters 91(25): 252103.
    3. Chen, K. H., H. W. Wang, et al. (2008). "Low Hg(II) ion concentration electrical detection with AlGaN/GaN high electron mobility transistors." Sensors and Actuators B: Chemical 134(2): 386-389.
    4. Wang, Y.-L., B. H. Chu, et al. (2008). "Botulinum toxin detection using AlGaN/GaN high electron mobility transistors." Applied Physics Letters 93(26): 262101.
    5. Yu, X., C. Li, et al. (2008). "Wireless hydrogen sensor network using AlGaN/GaN high electron mobility transistor differential diode sensors." Sensors and Actuators B: Chemical 135(1): 188-194.
    6. Pearton, S. J., F. Ren, et al. (2010). "Recent advances in wide bandgap semiconductor biological and gas sensors." Progress in Materials Science 55(1): 1-59.
    7. Makowski, M. S., S. Kim, et al. (2013). "Physisorption of functionalized gold nanoparticles on AlGaN/GaN high electron mobility transistors for sensing applications." Applied Physics Letters 102(7): 074102
    8. Kang, B. S., S. Kim, et al. (2004). "Pressure-induced changes in the conductivity of AlGaN∕GaN high-electron mobility-transistor membranes." Applied Physics Letters 85(14): 2962-2964.
    9. Liu, Y., P. P. Ruden, et al. (2006). "Effect of hydrostatic pressure on the dc characteristics of AlGaN/GaN heterojunction field effect transistors." Applied Physics Letters 88(1): 013505.
    10. Edwards, M. J., E. D. Le Boulbar, et al. (2012). "Pressure and temperature dependence of GaN/AlGaN high electron mobility transistor based sensors on a sapphire membrane." Physica status solidi (c) 9(3-4): 960-963.
    11. Zhao, M., X. Y. Liu, et al. (2013). "Analysis of the device characteristics of AlGaN/GaN HEMTs over a wide temperature range." Materials Science and Engineering: B 178(7): 465-470.
    12. Chu, B. H., B. S. Kang, et al. (2008). "Enzyme-based lactic acid detection using AlGaN∕GaN high electron mobility transistors with ZnO nanorods grown on the gate region." Applied Physics Letters 93(4): 042114.
    13. Kang, B. S., H. T. Wang, et al. (2008). "Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors." Journal of Applied Physics 104(3): 031101.
    14. Wang, Y.-L., C. Y. Chang, et al. (2010). "Oxygen gas sensing at low temperature using indium zinc oxide-gated AlGaN/GaN high electron mobility transistors." Journal of Vacuum Science & Technology B 28(2): 376-379.
    15. Warnke, C., H. Witte, et al. (2010). "Monitoring glycolytic oscillations using AlGaN/GaN high electron mobility transistors (HEMTs)." Sensors and Actuators B: Chemical 149(1): 310-313.
    16. Song, J. and W. Lu (2006). "Chemically gated AlGaN∕GaN heterostructure field effect transistors for polar liquid sensing." Applied Physics Letters 89(22): 223503.
    17. Jia, D., J. Hamilton, et al. (2007). "The time, size, viscosity, and temperature dependence of the Brownian motion of polystyrene microspheres." American Journal of Physics 75(2): 111-115.
    18. Marcel Dekker. (1985). "Infrared methods for gaseous measurements." New York.
    19. Manuccia TJ, Eden JG. (1985). "Infrared optical measurement of blood gas concentrations and fiber optical catheter." U.S. Patent 4,509,522.
    20. Chu, C.-S. Y.-L. Lo (2008). "Fiber-optic carbon dioxide sensor based on fluorinated xerogels doped with HPTS." Sensors and Actuators B: Chemical 129(1): 120-125.
    21. Kimmig L, Krause P, Ludwig M, Schmidt K. (2000). "Non-dispersive infrared gas analyzer." U.S. Patent 6,166,383.
    22. Zhou R, Hierlemann A, Weimar U, Schmeiber D, Gopel W. 1995. "The 8th international conference on solid-state sensors and actuators, and eurosensors IX." Stockholm, Sweden, June 25–29, 225-PD6.
    23. Shim, M., A. Javey, et al. (2001). "Polymer Functionalization for Air-Stable n-Type Carbon Nanotube Field-Effect Transistors." Journal of the American Chemical Society 123(46): 11512-11513.
    24. Kong, J. and H. Dai (2001). "Full and Modulated Chemical Gating of Individual Carbon Nanotubes by Organic Amine Compounds." The Journal of Physical Chemistry B 105(15): 2890-2893.
    25. Satyapal, S., T. Filburn, et al. (2001). "Performance and Properties of a Solid Amine Sorbent for Carbon Dioxide Removal in Space Life Support Applications." Energy & Fuels 15(2): 250-255.
    26. Dell'Amico, D. B., F. Calderazzo, et al. (2003). "Converting Carbon Dioxide into Carbamato Derivatives." Chemical Reviews 103(10): 3857-3898.
    27. Caballero, A., R. Martínez, et al. (2005). "Highly Selective Chromogenic and Redox or Fluorescent Sensors of Hg2+ in Aqueous Environment Based on 1,4-Disubstituted Azines." Journal of the American Chemical Society 127(45): 15666-15667.
    28. Coronado, E., J. R. Galán-Mascarós, et al. (2005). "Reversible Colorimetric Probes for Mercury Sensing." Journal of the American Chemical Society 127(35): 12351-12356.
    29. Jackson, K. W. and G. Chen (1996). "Atomic Absorption, Atomic Emission, and Flame Emission Spectrometry." Analytical Chemistry 68(12): 231-256.
    30. Burlingame, A. L., R. K. Boyd, et al. (1996). "Mass Spectrometry." Analytical Chemistry 68(12): 599-652.
    31. Anderson, J. L., E. F. Bowden, et al. (1996). "Dynamic Electrochemistry:  Methodology and Application." Analytical Chemistry 68(12): 379-444.
    32. Wang, H. T., B. S. Kang, et al. (2007). "Selective Detection of Hg (II )  Ions from Cu ( II ) and Pb ( II ) Using AlGaN ∕ GaN High Electron Mobility Transistors." Electrochemical and Solid-State Letters 10(11): J150-J153.
    33. Wang, H. T., B. S. Kang, et al. (2007). "Fast electrical detection of Hg(II) ions with AlGaN∕GaN high electron mobility transistors." Applied Physics Letters 91(4): 042114.
    34. Greenfield, R. A., B. R. Brown, et al. (2002). "Microbiological, Biological, and Chemical Weapons of Warfare and Terrorism." The American Journal of the Medical Sciences 323(6): 326-340.
    35. Michaelson, J. S., E. Halpern, et al. (1999). "Breast Cancer: Computer Simulation Method for Estimating Optimal Intervals for Screening." Radiology 212(2): 551-560.
    36. Harrison, T., L. Bigler, et al. (1998). "Salivary slgA concentrations and stimulated whole saliva flow rates among women undergoing chemotherapy for breast cancer: an exploratory study." Special Care in Dentistry 18(3): 109-112.
    37. Streckfus, C., L. Bigler, et al. (2000). "The Presence of Soluble c-erbB-2 in Saliva and Serum among Women with Breast Carcinoma: A Preliminary Study." Clinical Cancer Research 6(6): 2363-2370.
    38. Streckfus, C., L. Bigler, et al. (2000). "A Preliminary Study of CA15-3, c-erbB-2, Epidermal Growth Factor Receptor, Cathepsin-D, and p53 in Saliva Among Women with Breast Carcinoma." Cancer Investigation 18(2): 101-109.
    39. Streckfus, C. and L. Bigler (2005). "The Use of Soluble, Salivary c-erbB-2 for the Detection and Post-operative Follow-up of Breast Cancer in Women: The Results of a Five-year Translational Research Study." Advances in Dental Research 18(1): 17-24.
    40. Bagramyan, K., J. R. Barash, et al. (2008). "Attomolar Detection of Botulinum Toxin Type A in Complex Biological Matrices." PLoS ONE 3(4): e2041.
    41. Su, H., K. M. R. Kallury, et al. (1994). "Interfacial Nucleic Acid Hybridization Studied by Random Primer 32P Labeling and Liquid-Phase Acoustic Network Analysis." Analytical Chemistry 66(6): 769-777.
    42. Hashimoto, K., K. Ito, et al. (1994). "Novel DNA sensor for electrochemical gene detection." Analytica Chimica Acta 286(2): 219-224.
    43. Dae-Il, H., K. Dong-Sun, et al. (2005). "Detection of Streptavidin-Biotin Protein Complexes Using Three-Dimensional MOSFET in the Si Micro-Fluidic Channel." Japanese Journal of Applied Physics 44(7S): 5496.
    44. Toshihito, O., H. Chiho, et al. (2004). "Immobilization of Probe DNA on Ta2O5 Thin Film and Detection of Hybridized Helix DNA using IS-FET." Japanese Journal of Applied Physics 43(9A): L1137.
    45. Toshiya, S., K. Masao, et al. (2005). "DNA Analysis Chip Based on Field-Effect Transistors." Japanese Journal of Applied Physics 44(4S): 2854.
    46. Xuan, G., J. Kolodzey, et al. (2005). "Characteristics of field-effect devices with gate oxide modification by DNA." Applied Physics Letters 87(10): 103903.
    47. Baur, B., G. Steinhoff, et al. (2005). "Chemical functionalization of GaN and AlN surfaces." Applied Physics Letters 87(26): 263901.
    48. S. C. Garg, R. M. Bansal, and C. K. Ghosh, (1993). "Thermal Physics." Tata McGraw-Hill, New Delhi: 53–59.
    49. F. Reif, (1965). "Fundamentals of Statistical and Thermal Physics." McGraw-Hill, New York: 560–567.
    50. Byung-Hwan, C., B. S. Kang, et al. (2010). "Wireless Detection System for Glucose and pH Sensing in Exhaled Breath Condensate Using AlGaN/GaN High Electron Mobility Transistors." Sensors Journal, IEEE 10(1): 64-70.
    51. T. Greczyło and E. Dębowska, (2005). "Finding viscosity of liquids from Brownian motion at students’ laboratory." Eur. J. Phys. 26: 827-833.
    52. Silvestrelli, P. L. and M. Parrinello (1999). "Structural, electronic, and bonding properties of liquid water from first principles." The Journal of Chemical Physics 111(8): 3572-3580.
    53. Alexandridis, P. and L. Yang (2000). "SANS Investigation of Polyether Block Copolymer Micelle Structure in Mixed Solvents of Water and Formamide, Ethanol, or Glycerol." Macromolecules 33(15): 5574-5587.
    54. Scipioni, R., D. A. Schmidt, et al. (2009). "A first principles investigation of water dipole moment in a defective continuous hydrogen bond network." The Journal of Chemical Physics 130(2): 024502-024507.
    55. Yamauchi, H. and Y. Maeda (2007). "LCST and UCST Behavior of Poly(N-isopropylacrylamide) in DMSO/Water Mixed Solvents Studied by IR and Micro-Raman Spectroscopy." The Journal of Physical Chemistry B 111(45): 12964-12968.
    56. Antoniou, E., C. F. Buitrago, et al. (2010). "Solvent effects on polysaccharide conformation." Carbohydrate Polymers 79(2): 380-390.
    57. Lopes Jesus, A. J., M. T. S. Rosado, et al. (2003). "Molecular Structure of Butanediol Isomers in Gas and Liquid States:  Combination of DFT Calculations and Infrared Spectroscopy Studies." The Journal of Physical Chemistry A 107(19): 3891-3897.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE