研究生: |
王世邦 Sei-Bang Wang |
---|---|
論文名稱: |
快速強健非均勻有理樣條曲線(NURBS)即時插補與刀具半徑補正 Fast Robust Real-Time NURBS Interpolation and Tool Radius Compensation |
指導教授: |
雷衛台
Wei-Tai Lei |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | NURBS插補 、曲線擬合 、刀具半徑補正 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
NURBS提供了豐富的彈性,可以讓使用者自行設計想要的曲線,但受限於其複雜的數學形式,以及龐大的計算量,使得傳統的NURBS插補器是使用簡化的數值方法計算出下一時刻的路徑參數,使得插補精度無法提昇。
FAST NURBS插補法以預處理的方式建立出路徑長反函數,在即時的插補環境中,根據速度規劃所設定的進給量,利用路徑長反函式可以做到快速且高精度的插補效果,建立路徑長反函數最重要的部份為路徑總長的計算,在FAST NURBS插補法中,使用整段路徑以辛普森面積法進行數值積分的計算,但是在曲線路徑參數分佈極不均勻的情形之下,路徑總長的計算會發生錯誤,進而導致錯誤的路徑長反函數以及錯誤的插補路徑,本論文提出以節點向量為分割點,分段計算路徑總長的FAST ROBUST NURBS插補法,成功的消除了FAST NURBS在曲線節點參數分佈極不均勻時錯誤的發生。
刀具半徑補正是相當複雜的CNC智慧型功能之一,本論文所提出的刀具半徑補正針對直線線段進行處理,根據不同的轉接夾角選擇出適當的轉接路徑,可以做到確保斜率連續,部份的角度範圍中,更可以確保轉接路徑曲率連續,避免驅動馬達有劇烈的加速度變化,減輕機台的振動以提高加工及表面精度。在本論文中也實現刀具半徑補正預視功能,可以判斷封閉曲線,正確的修改進刀及退刀路徑,並可以偵測出補正路徑是否與工件發生過切,進行迴避或是路徑的修正。
[1] L.Piegl, W.Tiller, The NURBS Book, 2nd ed.Berlin:Springer, 1997.
[2] T.Otsuki, H.Kozai, Y.Wakinotani, inventors, Fanuc Ltd., assignee. “Free-Form Curve Interpolation Method and Apparatus.”, US Patent 5,815,401, 1996.
[3] T. Otsuki, H. Kozai, Y. Wakinotani, inventors, Fanuc Ltd., assignee. “Free Curve Interpolation Apparatus and Interpolation Method.”, US Patent 5,936,864, 1997.
[4] Q.G. Zhang, R.B. Greenway, “Development and implementation of a NURBS curve motion interpolator”, Robotics and Computer-Integrated Manufacturing, v14, n1, p27-p36, 1998.
[5] S.S. Yeh, P.L. Hsu, “The speed-controlled interpolator for machining parametric curves”, Computer-Aided Design, v31, n5, p349-p357, 1999.
[6] S.S. Yeh, P.L. Hsu, “Adaptive-feedrate interpolator for a parametric curves with a confined chord error”, Computer-Aided Design, v34, n3, p229-p237, 2002.
[7] H. Wang, J. Kearney, K. Atkinson, “Arc-Length Parameterized Spline Curves for Real-Time Simulation”, Proceedings of the 5th International Conference on Curves and Surfaces, San Malo, France, p387-p396, 2002.
[8] 鄭中緯, “運動控制器之即時NURBS曲線及曲面插值器設計與實現”, 博士論文, 國立成功大學, 2003.
[9] 林亮佑, “CNC控制器之即時NURBS插補” , 碩士論文, 國立清華大學, 2004.
[10] 呂信祈, “以多項式為基之CNC 2D刀具半徑修正”, 碩士論文, 國立清華大學, 1994.
[11] J.D. Faires, R. Burden, Numerical Methods, 2nd ed. Pacific Grove, CA: Books/Cole Pub. Co., 1998.
[12] R. Klass, “An offset spline approximatation for plane cubic splines”, Computer-aided Design, v15, n5, p297-p299, 1983.
[13] G.A. Korn and T.M. Kong, Mathematical Handbook for Scientists and engineers, McGraw-Hill BOOK Company, 1968.
[14] Y.L. Lai, J.S.S. Wu, J.P. Hung, J. H. Chen, “A Simple Method for Invaild Loops Removal of Planar Offset Curve”, The International Journal of Advanced Manufacturing Technology, v27 n11-12, 2006
[15] M.P. Sung, “Fast NURBS path interpolation and geometric errors compensation.”, NTHU, R.O.C, 2007
[16] FANUC Series 000-MC,0-Mate MC操作說明書, FANUC LTD, 1990.
[17] MITSUBISHI CNC MELDAS 300 Series Programming Manual(M2/Mo FORMAT), MITSUBISHI ELECTRIC.
[18] SINUMERIK 840D/810D/FM-NC Fundamentals Programming guide, SIEMENS, 08.97 Edition.
[19] L. Piegl and W. Tiller, “Curve and surface constructions using rational B-spline”, Computer-aided Design, v19, n9, p485-p498, 1987.
[20] 蔡秉寰, “多軸組CNC之物件導向分析與設計”, 碩士論文, 國立清華大學, 2003.
[21] 宋孟沛, “快速NURBS路徑插補及幾何誤差補償方法”, 博士論文, 國立清華大學, 2006.
[22] P.J Schneider, “NURBS Curves:A Guide for the Uninitiated”, The Apple Technical Journal, Develop issue 25, 2003.
[23] D.F. Rogers, Introduction to NURBS:with Historical Perspective, San Fransico : Morgan Kaufmann Pub., 2000.
[24] B. Pham, “Offset approximation of uniform B-spline”, Computer-aided Design, v20, n8, p471-p474, 1988.
[25] J. Hoschek, “Spline Approximation of offset curve”, CAGD, v5, p33-p40, 1988.
[26] I. Zeid, CAD/CAM Theory and Practice, McGraw-Hill BOOK Company, 1991.
[27] S.T. Tan and C.K. Lee, “Inversed Rational B-spline for Interpolation”, Computer and Structures, v34, n5, p889-p895, 1992.
[28] J. Hoschek and N.Wissel, “Optimal Approximate Conversion of Spline Curve and Spline Approximation of Offset Curve”, Computer-Aided Design, v20, n8, p475-p483, 1988
[29] 黃燕飛, CNC車床原理與實務, 全國工商出版社, 1986.
[30] J. Hoschek, “Offset Curve in the Plane”, Computer-Aided Design, v17, p77-p82, 1985.
[31] I.K. Lee, M.S. Kim, G.. Elber, “Planar Curve Offset Based On Circle Approximation.”, Computer-Aided Design, v28, p617-p630, 1996.