研究生: |
盧鈺心 Lu, Yu-Hsin |
---|---|
論文名稱: |
應用於寡精症之活動力精蟲篩選微流道 Utilization of Motility-Driven Sperm Sorting Microfluidic Chip for Oligozoospermia patients |
指導教授: |
饒達仁
Yao, Da-Jeng |
口試委員: |
劉承賢
Liu, Cheng-Hsien 鍾添淦 Chung, Tien-Kan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 微流體晶片 、精子篩選 、層流特性 、人工生殖 、寡精症 |
外文關鍵詞: | microfluidic chip, sperm sorting, laminar flow, artificial reproduction, oligozoospermia |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著醫學與科技進展,不少輔助生殖技術,如:體外受精(in vitro fertilization, IVF)、卵胞漿內單精子顯微注射(Intracytoplasmic Sperm Injection, ICSI),為不孕症夫婦帶來一大福音,然而上述方法往往需要採集高質量、活動力佳的精子進行妊娠。本研究以機械式幫浦控制系統穩定緩慢的流場提供精蟲合適的游動環境,利用微流道晶片內層流特性區隔活動力較差的精蟲,並藉由精蟲本身之泳動性篩選出高品質的精蟲。
本論文使用微機電製程與軟微影技術製成的聚二甲基矽氧烷 (Polydimethylsiloxanes, PDMS)晶片以及經由射出成型加工而成的聚碳酸酯(Polycarbonate, PC)晶片,此二種材料具有生物相容性、可拋棄式、低成本、製程簡易等優點。實驗包含晶片微流道設計、流場模擬、幫浦參數設定、流式細胞檢測計數以及各精子濃度、活動力篩選的分析結果。
首先以PDMS晶片針對不同黏滯度的原液樣本採不同流速比進行分選,雖能提升活蟲率,然而當稀釋液流速提高時,篩選效率降低。故而後先將檢體固定稀釋成2mPa×s黏滯度後,使用相同8:1 (稀釋液:精液)之流速比進行篩選,可提高篩選效率且無論是正常、寡精或弱精檢體之活蟲率均有約15%左右的提升,證實本晶片確實兼具提升檢體的活蟲率和收集活精蟲之能力。
接著使用PC晶片進行固定黏滯度搭配8:1流速比之篩選實驗,發現精液會匯集到儲存槽,需提高流速比做篩選,推論可能原因為在流道與熱熔線間縫隙的回流現象導致,未來會改善PC晶片的接合方式,量產晶片以提供予人工生殖技術使用。
With advances in medicine, many assisted reproductive technologies, such as in vitro fertilization (IVF) and intracytoplasmic Sperm Injection (ICSI), bring benefits to a large number of infertility couples. However, the above methods often require the high-quality, highly active sperms for pregnancy. In this study, the stable flow field of the syringe pump provides a suitable swimming environment for sperms. We can separate poor sperms by laminar flow and collect high quality sperms by motility.
In this paper, polydimethylsiloxanes (PDMS) chips fabricated by SU-8 thick film photolithography and soft lithography are used, as well as polycarbonate (Polycarbonate, PC) chips processed by injection molding. These two materials are biocompatible, disposable, low cost, and easy to manufacture. The experiment included microchannel design, flow field simulation, pump settings, sperm counting with flow cytometry, and also the sorting results analysis.
From the results of stock sample sorting with PDMS chip, the viability was obviously improved by the modified flow rate, and the separation with respect to 8:1 has been greatly improved. However, sorting efficiency decreases as the flow rate ratio increases. Therefore, the semen was fixedly diluted to 2mPa×s viscosity, and sorted by the flow rate 8: 1 (buffer: semen). This method can enhance the viability for about 15% on whether normal, oligozoospermia, or asthenospermia samples. It was confirmed that the chip can indeed collect motile sperms and increase the viability.
Then in PC chip sorting experiment with fixed viscosity and 8:1 flow rate ratio, we find that the semen will concentrate into the storage tank; hence the flow rate ratio needs to be increased. It may because of the reflux phenomenon in the gap between the channel and the bonding line. The bonding way of PC chip will be improved, and it is expected that the PC sperm sorting chips will be mass-produced in the future to provide for artificial reproduction technology.
1. Feynman, R.P., There's plenty of room at the bottom. Engineering and science, 1960. 23(5): p. 22-36.
2. Manz, A., N. Graber, and H.á. Widmer, Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and actuators B: Chemical, 1990. 1(1-6): p. 244-248.
3. Manz, A., et al., Micromachining of monocrystalline silicon and glass for chemical analysis systems A look into next century's technology or just a fashionable craze? 1991, Elsevier.
4. Beebe, D.J., G.A. Mensing, and G.M. Walker, Physics and applications of microfluidics in biology. Annu Rev Biomed Eng, 2002. 4: p. 261-286.
5. Ichiki, T., et al. Development of bio-MEMS devices for single cell expression analysis. in Microprocesses and Nanotechnology Conference, 2001 International. 2001.
6. Zhan, Z., et al. Biochip for PCR amplification in silicon. in Microtechnologies in Medicine and Biology, 1st Annual International, Conference On. 2000. 2000.
7. CIA. Available from: https://www.reddit.com/r/MapPorn/comments/7pv5io/global_fertility_rates_in_2017_estimates_1356x628/.
8. Edwards, R., Towards single births after assisted reproduction treatment. Reprod Biomed Online, 2003. 7: p. 506-8.
9. Dickey, R., The relative contribution of assisted reproductive technologies and ovulation induction to multiple births in the United States 5 years after the Society for Assisted Reproductive Technology/American Society for Reproductive Medicine recommendation to limit the number of embryos transferred. Fertil Steril, 2007. 88: p. 1554-61.
10. Allen, V., R. Wilson, and A. Cheung, Pregnancy outcomes after assisted reproductive technology. J Obstet Gynaecol Can, 2006. 28: p. 220-50.
11. Setti, P., et al., Outcome of assisted reproductive technologies after different embryo transfer strategies. Reprod Biomed Online, 2005. 11: p. 64-70.
12. Patricia, K., N. Robert, and S. Jonathan, The economic impact of the assisted reproductive technologies. Nat Cell Biol, 2002: p. s29-32.
13. Henkel, R.R. and W.-B. Schill, Sperm preparation for ART. Reproductive Biology and Endocrinology, 2003. 1(108): p. 22.
14. Gordts, S., et al., Belgian legislation and the effect of elective single embryo transfer on IVF outcome. Reprod Biomed Online, 2005. 10: p. 436-41.
15. Pandian, Z., et al., Number of embryos for transfer following in-vitro fertilisation or intra-cytoplasmic sperm injection. Cochrane Database Syst Rev, 2004. 18: p. CD003416.
16. Gebe. Available from: https://www.gebe.com/tup-bebek-tedavisi-sureci.
17. PraviIVF. Available from: http://praviivf.in/fertilitytreatment.aspx.
18. Zini, A., et al., Influence of semen processing technique on human sperm DNA integrity. Urology, 2000. 56(6): p. 1081-1084.
19. Jayaraman, V., et al., Sperm processing by swim-up and density gradient is effective in elimination of sperm with DNA damage. Journal of assisted reproduction and genetics, 2012. 29(6): p. 557-563.
20. Chen, Y.-A., et al., Analysis of sperm concentration and motility in a microfluidic device. Microfluidics and Nanofluidics, 2010: p. 1-9.
21. Yamada, M., et al., Microfluidic devices for size-dependent separation of liver cells Biomedical Microdevices, 2007. 9(5): p. 637-645.
22. Lin, C.-H., et al., Novel continuous particle sorting in microfluidic chip utilizing cascaded squeeze effect. Microfluidics and nanofluidics, 2009. 7(4): p. 499.
23. McCormack, M.C., S. McCallum, and B. Behr, A novel microfluidic device for male subfertility screening. Journal of Urology, 2006. 175(6): p. 2223-2227.
24. Suh, R., S. Takayama, and G.D. Smith, Microfluidic Applications for Andrology. Journal of andrology, 2005. 26((6)): p. 664 - 670.
25. Warkiani, M.E., et al., Large-Volume Microfluidic Cell Sorting for Biomedical Applications. Annu Rev Biomed Eng, 2015. 17: p. 1-34.
26. Nosrati, R., et al., Rapid selection of sperm with high DNA integrity. Lab Chip, 2014. 14(6): p. 1142-50.
27. Zhang, B., T.L. Yin, and J. Yang, A novel microfluidic device for selecting human sperm to increase the proportion of morphologically normal, motile sperm with uncompromised DNA integrity. Analytical Methods, 2015. 7(14): p. 5981-5988.
28. Whitesides, G.M., The origins and the future of microfluidics. Nature, 2006. 442(7101): p. 368.
29. Sackmann, E.K., A.L. Fulton, and D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature, 2014. 507(7491): p. 181.
30. Psaltis, D., S.R. Quake, and C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics. nature, 2006. 442(7101): p. 381.
31. Natali, I., Sperm Preparation Techniques for Artificial Insemination - Comparison of Sperm Washing, Swim Up, and Density Gradient Centrifugation Methods, in Artificial Insemination in Farm Animals, M. Manafi, Editor. 2011, InTech: Rijeka. p. Ch. 07.
32. Ricci, G., et al., Semen preparation methods and sperm apoptosis: swim-up versus gradient-density centrifugation technique. Fertility and sterility, 2009. 91(2): p. 632-638.
33. Jameel, T., Sperm swim-up: a simple and effective technique of semen processing for intrauterine insemination. J Pak Med Assoc, 2008. 58(2): p. 71-4.
34. Malvezzi, H., et al., Sperm quality after density gradient centrifugation with three commercially available media: a controlled trial. Reproductive Biology and Endocrinology, 2014. 12(1): p. 121.
35. Son, J., et al., Separation of sperm cells from samples containing high concentrations of white blood cells using a spiral channel. Biomicrofluidics, 2017. 11(5): p. 054106.
36. Nosrati, R., et al., Rapid selection of sperm with high DNA integrity. Lab on a Chip, 2014. 14(6): p. 1142-1150.
37. Valcarce, D., et al., Selection of nonapoptotic sperm by magnetic-activated cell sorting in Senegalese sole (Solea senegalensis). Theriogenology, 2016. 86(5): p. 1195-1202.
38. Matsuura, K., et al., Screening of sperm velocity by fluid mechanical characteristics of a cyclo-olefin polymer microfluidic sperm-sorting device. Reprod Biomed Online, 2012. 24(1): p. 109-15.
39. Matsuura, K., et al., Screening of sperm velocity by fluid mechanical characteristics of a cyclo-olefin polymer microfluidic sperm-sorting device. Reproductive biomedicine online, 2012. 24(1): p. 109-115.
40. Lin, Y.-N., et al. High-throughput sperm sorting in a micro diffuser type fluidic system. in Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on. 2013. IEEE.
41. Koyama, S., et al., Chemotaxis assays of mouse sperm on microfluidic devices. Analytical Chemistry, 2006. 78(10): p. 3354 -3359.
42. Lin, Y.N., et al. High-throughput sperm sorting in a micro diffuser type fluidic system. in Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on. 2013.
43. Chang-Yen, D.A., R.K. Eich, and B.K. Gale, A monolithic PDMS waveguide system fabricated using soft-lithography techniques. Lightwave Technology, Journal of, 2005. 23(6): p. 2088-2093.
44. Slentz, B.E., N.A. Penner, and F.E. Regnier, Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization. Journal of Chromatography A, 2002. 948(1-2): p. 225-233.
45. Bauwens, J., C. Bauwens‐Crowet, and G. Homes, Tensile yield‐stress behavior of poly (vinyl chloride) and polycarbonate in the glass transition region. Journal of Polymer Science Part A‐2: Polymer Physics, 1969. 7(10): p. 1745-1754.
46. Chan, J.M., et al., Chemically modifiable N-heterocycle-functionalized polycarbonates as a platform for diverse smart biomimetic nanomaterials. Chemical Science, 2014. 5(8): p. 3294-3300.
47. Kanno, H., et al., Viability and function of human sperm in electrolyte-free cold preservation. Fertility and sterility, 1998. 69(1): p. 127-131.
48. Garner, D.L. and L.A. Johnson, Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biology of reproduction, 1995. 53(2): p. 276-284.
49. Chu SC, W.T., Li CC, Kao RH, Li DK, Su YC, Wells DA, Loken MR, Flow cytometric scoring system as a diagnostic and prognostic tool in myelodysplastic syndromes. Leuk Res, 2011. 35: p. 868-73.
50. Organization, W.H., WHO Laboratory Manual for the Examination and Processing of Human Semen. 2010: World Health Organization.
51. Lin, C.-H., C.-H. Chao, and C.-W. Lan, Low azeotropic solvent for bonding of PMMA microfluidic devices. Sensors and Actuators B: chemical, 2007. 121(2): p. 698-705.
52. Klank, H., J.P. Kutter, and O. Geschke, CO 2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab on a Chip, 2002. 2(4): p. 242-246.
53. Tran, H.H., W. Wu, and N.Y. Lee, Ethanol and UV-assisted instantaneous bonding of PMMA assemblies and tuning in bonding reversibility. Sensors and Actuators B: Chemical, 2013. 181: p. 955-962.
54. Zhang, H., et al., Miscible organic solvents soak bonding method use in a PMMA multilayer microfluidic device. Micromachines, 2014. 5(4): p. 1416-1428.
55. Chen, P.-C. and L.H. Duong, Novel solvent bonding method for thermoplastic microfluidic chips. Sensors and Actuators B: Chemical, 2016. 237: p. 556-562.
56. Ferraz, M.A., et al., Designing 3-dimensional in vitro oviduct culture systems to study mammalian fertilization and embryo production. Annals of biomedical engineering, 2017. 45(7): p. 1731-1744.
57. Yanez, L.Z. and D.B. Camarillo, Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies. MHR: Basic science of reproductive medicine, 2017. 23(4): p. 235-247.
58. Huang, H.-Y., Y.-L. Lai, and D.-J. Yao, Dielectrophoretic Microfluidic Device for in Vitro Fertilization. Micromachines, 2018. 9(3): p. 135.