簡易檢索 / 詳目顯示

研究生: 巫瑞恆
Wu, Jui-Heng
論文名稱: 對具水平異向性之白金錳/鈷鐵硼之電流驅動翻轉之研究與分析
Analysis of spin-orbit torque (SOT) switching for in-plane anisotropy PtMn/CoFeB system
指導教授: 賴志煌
Lai, Chih-Huang
口試委員: 李愷信
Li, Kai-Xin
林秀豪
Lin, Hsiu-Hau
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 57
中文關鍵詞: 白金錳反鐵磁電流驅動翻轉水平異向性
外文關鍵詞: PtMn, antiferromagnet, SOT switching, in-plane anisotropy
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自旋軌道力矩已經被提出是下一個世代磁阻式隨機存取記憶體的寫入方式,極具發展潛力,許多學者開始投入此領域進行深入研究。本實驗之水平白金錳/鈷鐵硼系統即為研究水平的自旋軌道力矩翻轉,其優勢除了寫入速度快之外,臨界翻轉電流也較低,且其翻轉過程不需要額外施加外加場幫忙。
    本實驗主要透過磁力顯微鏡(MFM)與水平聚焦式科爾儀(L-MOKE)對已序化之白金錳/鈷鐵硼系統進行自旋軌道力矩翻轉的分析。整個實驗過程中的濺鍍膜層、黃光微影、離子束蝕刻皆在我們實驗室完成,我們將元件做成霍爾長方,盡量提高白金錳的厚度,並且降低其他層的厚度,以提升白金錳層的電流密度,最終我們能成功達成零場翻轉,其臨界電流密度為3.78*107 A/cm2,在量測磁滯曲線之後,我們更是發現其交換場隨者自旋軌道力矩的翻轉也跟著翻動了。並且我們也調整了白金錳的厚度與膜層順序來進行比較。


    Spin-orbit torque (SOT) switching has been proposed to be the most promising writing scheme for next-generation magnetic random access memory (MRAM). SOT with an orthorhombic current/in-plane magnetization geometry which has demonstrated its potential on the deterministic switching dynamics and low-power consumption.
    In this work, we exhibit the field-free SOT switching in a PtMn/CoFeB bilayer studied by using a magnetic force microscope (MFM) and amagneto-optical Kerr magnetometer (MOKE). The Whole process fabricating the devices has been done in our lab myself, such as film sputtering, photolithography, and ion beam etching. We fabricate the device into hall bar structure. We increase the thickness of PtMn layer and reduce the thickness of others in order to reduce the critical current for switching. PtMn is an antiferromagnet with considerable spin Hall Effect as typical heavy metals, which is capable of triggering the magnetization switching of adjacent CoFeB with a critical current density of 3.78*107 A/cm2. Furthermore, the hysteresis loops acquired from the two magnetic states show a clear variation on exchange bias (±160 Oe), suggesting the spin configuration at the PtMn/CoFeB interface can be modified by the spin Hall effect from PtMn itself. At the same time, we change the thickness of PtMn and the order of deposition to make some comparison and discussion.

    第一章 前言 1 第二章 文獻回顧 3 2.1磁性材料與電子自旋 3 2.2 穿隧磁阻(TMR)與三終端磁性穿隧接合(3T- MTJ) 4 2.3 鈷鐵硼/氧化鎂系統之穿隧特性 7 2.4自旋軌道力矩(Spin Orbit Torque, SOT) 9 2.4.1 Rashba效應 10 2.4.2自旋霍爾效應 12 2.4.3 場類似力矩(field-like torque, FLT) 與 似阻尼力矩(damping-like torque, DLT) 14 2.4.4 自旋軌道力矩的發展 15 2.5反鐵磁材料與交換異向性 15 2.6白金錳(PtMn)的性質 17 2.7自旋軌道力矩在反鐵磁上的應用 19 第三章 實驗儀器介紹 25 3.1 高真空濺鍍機(HV sputtering system) 25 3.2 離子束蝕刻機(ion beam etching) 26 3.3黃光微影製程(photolithography) 27 3.4震動樣品磁測儀(Vibrating Sample Magnetometer) 28 3.5磁真空退火爐(magnetic annealing system) 29 3.6 X-射線繞射分析儀(X-ray diffraction) 30 3.7原子力顯微鏡與磁力顯微鏡(atomic force microscope & magnetic force microscope) 32 3.8 探針座(probe system) 33 3.9 聚焦式磁光柯爾效應儀(focused magneto-optical Kerr effect) 34 第四章 實驗結果與討論 36 4.1 白金錳的性質調整與研究 36 4.1.1 白金錳退火之後的相變化 37 4.1.2 下層白金緩衝層的影響 38 4.1.3 白金錳/鈷與白金錳/鈷鐵硼磁滯曲線差異 39 4.2 白金錳元件的型式Y的電流驅動翻轉 40 4.3 磁力顯微鏡(MFM)量測 42 4.4 SOT後交換場的翻轉 44 4.5 與Sub/Ta1.50/PtMn9/CoFeB2.5/Ta1.5(nm)元件進行比較 46 4.6與Sub/Ta1.5/CoFeB2.5/PtMn16/Ta1.5(nm)元件進行比較 47 4.7與Sub/Ta1.5/CoFeB2.5/PtMn9/Ta1.5(nm)元件進行比較 49 4.8 小整理 51 第五章 結論 52 文獻參考 53

    1. L. Liu, C.-F. Pai, Y. Li, H.W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin-torque switching with the giant spin Hall effect of tantalum, Science 336, 555 (2012).
    2. C. F. Pai, L. Liu, Y. Li, H.W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin transfer torque devices utilizing the giant spin Hall effect of tungsten, Appl. Phys. Lett. 101, 122404(2012).
    3. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).
    4. Lau, Y.-C., D. Betto, K. Rode, J. M. D. Coey, and P. Stamenov, “Spin-orbit torque switching without an external field using interlayer exchange coupling,” Nat. Nanotechnol. 11, 758 (2016).
    5. S. Fukami, C. Zhang, S. DuttaGupta, A. Kurenkov, and H. Ohno, Nat. Mater. 15, 535 (2016).
    6. A. D. Kent, Spintronics: Perpendicular all the way. Nat. Mater. 9, 699. (2010).
    7. Yoda, H., Sugiyama, H., Inokuchi, T., Kato, Y., Ohsawa, Y., Abe, K., … Kurobe, A. High-Speed Voltage-Control Spintronics Memory (High-Speed VoCSM). 2017 IEEE International Memory Workshop (IMW). (2017).
    8. S. Shi, Y. Ou, S. Aradhya, D. C. Ralph, and R. A. Buhrman, “Fast low current spin-orbit-torque switching of magnetic tunnel junctions through atomic modifications of the free-layer interfaces,” Phys. Rev. Appl., vol. 9, no. 1, p. 011002, (2018).
    9. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Phys. Rev. Lett. 61, 2472. (1988).
    10. J. S. Moodera, Lisa R. Kinder, Terrilyn M. Wong, and R. Meservey, Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions, Phys. Rev. Lett. 74, 3273. (1995).
    11. J. Z. Sun et al. A three-terminal spin-torque-driven magnetic switch. Appl. Phys. Lett. 95, 109901 (2009)
    12. I. M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M. V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, and P. Gambardella, Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection, Nature 476, 189 (2011).
    13. W. S. Zhao, Y. Zhang, T. Devolder, J. O. Klein, D. Ravelosona, C. Chappert, and P. Mazoyer, Failure and reliability analysis of STT-MRAM, Microelectron. Reliab. 52, 1848–1852 (2012).
    14. M. Marins de Castro, R. C. Sousa, S. Bandiera, C. Ducruet, A. Chavent, S. Auffret, C. Papusoi, I. L. Prejbeanu, C. Portemont, L. Vila, U. Ebels, B. Rodmacq, and B. Dieny, J., Precessional spin-transfer switching in a magnetic tunnel junction with a synthetic antiferromagnetic perpendicular polarizer, Appl. Phys. 111, 07C912 (2012).
    15. 6 M. Gajek, J. J. Nowak, J. Z. Sun, P. L. Trouilloud, E. J. O’Sullivan, D. W. Abraham, M. C. Gaidis, G. Hu, S. Brown, Y. Zhu, R. P. Robertazzi, W. J. Gallagher, and D. C. Worledge, Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy, Appl. Phys. Lett. 100, 132408 (2012)
    16. G. Panagopoulos, C. Augustine, and K. Roy, in Proceedings of Device Research Conference (DRC) (2011), p. 125–126.
    17. M. Cubukcu, O. Boulle, M. Drouard, K. Garello, C. O. Avci, I. M. Miron, J. Langer, B. Ocker, P. Gambardella, and G. Gaudin, Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction, Appl. Phys. Lett. 104, 042406 (2014).
    18. D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, 230% room-temperature magnetoresistance in CoFeB/ MgO/ CoFeB magnetic tunnel junctions, Appl. Phys. Lett. 86, 092502 (2005).
    19. Diao Z, Apalkov D, Pakala M, Panchula A, Ding Y and Huai Y Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlOx barriers, Appl. Phys. Lett. 87 232502. (2005)
    20. H. Kubota, A. Fukushima, Y. Ootani, S. Yuasa, K. Ando, H. Maehara, K. Tsunekawa, D. D. Dyayaprawira, N. Watanabe, and Y. Suzuki, “Evaluation of spin-transfer switching in CoFeB/MgO/CoFeB magnetic tunnel junctions,” Jpn. J. Appl. Phys., vol. 44, no. 40, pp. L1237–L1240, Sep. 2005.
    21. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nat. Mater. 3, 868(2004)
    22. C. Tiusan, J. Faure-Vincent, M. Sicot, M. Hehn, C. Bellouard, F. Montaigne, S. Andrieu, A. Schuhl,Spin filtering effects in monocristalline Fe/MgO/Fe magnetic tunnel junctions, Materials Science and Engineering B 126. 112–119. (2006).
    23. Bychkov, Y. A. & Rashba, E. I. Oscillatory effects and the magnetic-susceptibility of carriers in inversion-layers. J. Phys. C 17, 6039–6045 (1984).
    24. Edelstein, V. M. Spin polarization of conduction electrons induced by electric-current in 2-dimensional asymmetric electron-systems. Solid State Commun. 73, 233–235 (1990).
    25. J. E. Hirsch, Spin Hall Effect. Phys. Rev. Lett. 83, 1834 (1999).
    26. M. I. Dyakonov and V. I. Perel, Sov. CURRENT-INDUCED SPIN ORIENTATION OF ELECTRONS IN SEMICONDUCTORS. Phys. JETP 13, 467 (1971)
    27. Rashba E I Symmetry of energy bands in crystals of wurtzite type: I. symmetry of bands disregarding spin-orbit interaction Sov. Phys.-Solid State 1 368–80. (1959).
    28. S Datta, B Das, Electronic analog of the electro‐optic modulator, Appl. Phys. Lett. 56, 665 (1990).
    29. I. M. Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, and P. Gambardella, Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer, Nat. Mater. 9, 230 (2010).
    30. Jairo Sinova, Sergio O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87, 1213 (2015.)
    31. M. I. DYAKONOV and V. I. PEREL, CURRENT-INDUCED SPIN ORIENTATION OF ELECTRONS IN SEMICONDUCTORS, phys lett.volume 35A, number6. (1971)
    32. G. Y. Guo, S. Murakami, T.-W. Chen, and N. Nagaosa, Intrinsic Spin Hall Effect in Platinum: First-Principles Calculations, Phys. Rev. Lett. 100, 096401.(2008)
    33. 33. S. O. Valenzuela and M. Tinkham, Direct electronic measurement of the spin Hall effect, Nature (London) 442, 176 (2006).
    34. Oh YW, Chris Baek SH, Kim YM, Lee HY, Lee KD, Yang CG, et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ ferromagnet/oxide structures. Nat Nanotechnol, 878–84. (2016).
    35. Fukami S, Zhang C, DuttaGupta S, Kurenkov A, Ohno H. Magnetization switching by spin–orbit torque in an antiferromagnet-ferromagnet bilayer system. Nat Mater, 15:535–41. (2016)
    36. Y. Niimi, M. Morota, D. H. Wei, C. Deranlot, M. Basletic, A. Hamzic, A. Fert, and Y. Otani, Extrinsic Spin Hall Effect Induced by Iridium Impurities in Copper, Phys. Rev. Lett. 106, 126601. (2011)
    37. Y. Niimi, Y. Kawanishi, D. H. Wei, C. Deranlot, H. X. Yang, M. Chshiev, T. Valet, A. Fert, and Y. Otani, Giant Spin Hall Effect Induced by Skew Scattering from Bismuth Impurities inside Thin Film CuBi Alloys, Phys. Rev. Lett. 109, 156602. (2012)
    38. Y. Fan et al., Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure, Nat. Mater. 13, 699 (2014).
    39. M. Jamali, J. S. Lee, J. S. Jeong, F. Mahfouzi, Y. Lv, Z. Zhao, B. K. Nikolić, K. A. Mkhoyan, N. Samarth, and J.-P. Wang, Giant spin pumping and inverse spin Hall effect in the presence of surface spin-orbit coupling of topological insulator BiSe, Nano Lett. 15, 7126 (2015).
    40. W. H. Meiklejohn and C. P. Bean, New Magnetic Anisotropy, Phys. Rev. 102, 1413.(1956)
    41. Peter F. Ladwig, Y. Austin Chang, Eric S. Linville, Augusto Morrone, Jenny Gao, Bharat B. Pant, Alan E. Schlutz , and Sining Mao, Paramagnetic to antiferromagnetic phase transformation in sputter deposited Pt–Mn thin films. J. Appl. Phys. 94, 979. (2003).

    QR CODE