研究生: |
高士鳳 Shih-Feng Kao |
---|---|
論文名稱: |
曲線配適技術與利率模型間一致性之探討-以台灣市場為例 Consistence between Initial Curves and Interest Rate Models: An Empirical Study in Taiwan Market |
指導教授: |
張焯然
Jow-Ran Chang 蔡錦堂 Jiin-Tarng Tsay |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 科技管理研究所 Institute of Technology Management |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 一致性 、曲線配適 、無套利模型 、公債期貨 |
外文關鍵詞: | consistence, fitting curve, no-arbitrage model, bond futures |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要探討曲線配適方法與無套利評價模型間之一致性對於利率衍生性商品評價的重要性。以指數內插法、Nelson and Siegel (1987)及Steeley (1991)三種曲線配適方法,與Heath, Jarrow and Morton (1992)及Hull and White (1994)兩種利率模型,交互進行組合配對(包含具一致性及不具一致性之組合),針對公債期貨評價,得到六種不同的評價結果。研究重點為:1.利用曲線配適方法建構平滑的利率期限結構,2.將配適結果輸入利率模型中,作為初始的殖利率曲線 (initial curve),進而評價公債期貨;與實際交易價格比較,選出六種評價結果中,價格誤差較小者,即求得最佳曲線配適方法與利率模型之組合。研究結果顯示,選擇與利率模型間具有一致性的曲線配適方法,除了可降低參數估計的不穩定性之外,評價誤差也較低;本研究求得最佳配適方法與利率模型之組合為Nelson and Siegel (1987)與Hull and White (1994),在樣本期間內,對公債期貨評價的平均誤差為0.0379。
This study investigates the importance of consistence with fitting curve techniques and arbitrage free interest rate model for pricing interest derivatives. We employ three different yield curve fitting methods which are exponential interpolation method, Nelson-Siegel (1987) and Steeley (1991) and use them as input to estimate the parameters for two different interest rate models, Heath-Jarrow-Morton (1992) and Hull-White (1994), to pricing Taiwan Treasury bond futures. The results show that the combination of consistent fitting curve method and interest rate model helps in stabilizing the parameters estimators and reducing the pricing error of bond futures. We present the best combination of fitting curve method and interest rate model is Nelson-Siegel method and Hull-White model with the mean percentage error of bond futures 0.0379.
一、國內文獻
賴曉璐 (1996), “政府公債殖利率曲線形狀與免疫策略的選擇”, 國立台灣大學財務金融研究所碩士論文。
二、國外文獻
Adams, K.J. and D.R. Van Deventer (1994), “Fitting yield curves and forward rate curves with maximum smoothness”, The Journal of Fixed Income, 4, 52-62.
Amin, K. and A. Morton (1994), “Implied volatility functions in arbitrage-free term structure models”, Journal of Financial Economics, 35, 141-180.
Angelini, F. and S. Herzel (2002), “Consistent initial curves for interest rate models”, The Journal of Derivatives, Summer, 8-17.
Bj□rk, T. and B.J. Christensen (1999), “Interest rate dynamics and consistent forward rate curves”, Mathematical Finance, 9, 323-348.
Black, F. (1976), “The pricing of commodity contracts”, Journal of Financial Economics, 3, Jan-Mar, 167-179.
Black, F., E. Derman, and W. Toy (1990), “A one factor model of interest rates and its application to Treasury Bond options”, Financial Analysts Journal, Jan-Feb, 33-39.
Black, F. and P. Karasinski (1991), “Bond and option pricing when short rates are lognormal”, Financial Analysts Journal, July-August, 52-59.
Brennan, M.J. and E.S. Schwartz (1979), “A continuous time apparoach to the pricing of bonds”, Journal of Banking and Finance, 3, 135-155.
Brennan, M.J. and E.S. Schwartz (1982), “An equilibrium model of bond pricing and a test of market efficiency”, Journal of Financial and Quantitative Analysis, 17, 303-329.
Chambers, D.R., W.T. Carleton, and D.R. Waldman (1984), “A new approach to estimation of the term structure of interest rate”, Journal of Financial and Quantitative Analysis, 19, 223-252.
Cox, J.C., J.E. Ingersoll, and S.A. Ross (1985), “A theory of the term structure of interest rates”, Econometrica, 53, 385-407.
Dothan, Uri L. (1978), “On the term structure of interest rates”, Journal of Financial Economics, 6, 59-69.
Fong, H.G. and O.A. Vasicek (1991), “Fixed income volatility management”, Journal of Portfolio Management, Summer, 41-46.
Fong, H.G. and O.A. Vasicek (1992a), “Omission impossible”, Risk, 5, 62-65.
Fong, H.G. and O.A. Vasicek (1992b), “Interest rate volatility as a stochastic factor”, working paper, Gifford Fong Associates.
Heath, D., R. Jarrow, and A. Morton (1992), “Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation”, Econometrica, 60, 77-105.
Ho, T.S.Y. and S.B. Lee (1986), “Term structure movements and pricing interest rate contingent claims”, Journal of Finance, 41, 1011-1029.
Hull, J. and A. White (1990), “Pricing interest rate derivative securities”, Review of Financial Studies, 3, 573-592.
Hull, J. and A. White (1993), “Efficient procedures for valuing European and American path dependent options”, Journal of Derivatives, 1, 21-32.
Hull, J. and A. White (1994), “Numerical procedures for implementing term structure models І: single- factor models”, Journal of Derivatives, Fall, 7-16.
Hull, J. and A. White (1996), “Using Hull-White interest rate trees”, Journal of Derivatives, Spring, 26-36.
Lin, B.H., R.R. Chen, and J.H. Chou (1999), “Pricing and quality option in Japanese government bond futures”, Applied Financial Economics, 9, 51-65
Lin, B.H. (2002), “Fitting the term structure of interest rates using B-spline: the case of Taiwanese government bonds”, Applied Financial Economics, 12, 55-75.
Longstaff, F. and E. Schwartz (1992), “Interest rate volatility and the term structure: a two factor general equilibrium model”, Journal of Finance, 47, 1259-1282.
McCulloch, J.H. (1971), “Measuring the term structure of interest rates”, Journal of Business, January, 19-31.
Nava, J.F. (1999), “Consistent versus non-consistent term structure models: some evidence from the Spanish Market”, The Journal of Fixed Income, December, 42-60.
Nelson, C.R. and A.F. Siegel (1987), “Parsimonious modeling of yield curves”, Journal of Business, 60, 473-489.
Nunes, J.P.V. and L.A.F. de Oliverira (2003), “Quasi-analytical multi-factor valuation of Treasury Bond futures with an embedded quality option”, discussion paper E2-2, German Finance Association.
Ritchken, P. and L. Sankarasubramanian (1995), “A multifactor model of the quality option in treasury futures contracts”, The Journal of Financial Research, 18, 261-279.
Schaefer, S.M. and E.S. Schwartz (1984), “A two factor model of the term structure: an approximate analytical solution”, Journal of Financial and Quantitative Analysis, 19, 413-424.
Steeley, J.M. (1991), “Estimation the Gilt-Edged term structure: Basis splines and confidence intervals”, Journal of Business Finance and Accounting, 18, 513-529.
Svensson, L.E.O. (1994), “Estimating and interpreting forward interest rates: Sweden 1992-1994”, IMF working paper, no. 114.
Vasicek, O. (1977), “An equilibrium characterization of the term structure”, Journal of Financial Economics, 5, 177-188.
Vasicek, O.A. and H.G. Fong (1982), “Term structure modeling using exponential splines”, The Journal of Finance, 37, 339-356.