簡易檢索 / 詳目顯示

研究生: 莫嘉政
Mo, Chia-Cheng
論文名稱: 處理介面擴散的有限差分方法
Finite Difference Method for Surface Diffusion
指導教授: 賴明治
Lai, Ming-Chih
蔡東和
Tsai, Dong-Ho
口試委員: 吳金典
Wu, Chin-Tien
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 28
中文關鍵詞: 介面擴散有限差分方法
外文關鍵詞: surface diffusion, finite difference method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Surface diffusion is a motion of crystals that the normal velocity of an interface
    is proportional to the surface Laplacian of mean curvature with respect to the
    arclength. It is a very popular issue for materials science and applied mathematics.
    Overview this thesis, our numerical method is based on the finite difference
    method, compare the numerical results with the results of E. B‥ansch, P. Morin
    and R. H. Nochetto, which uses the finite element method for surface diffusion,
    and give the proofs of two known properties of surface diffusion, the preservation
    of area and the decrease of arclength. Moreover, we also give the sufficient condition
    for choosing t in our numerical scheme, which makes sure that if t is
    chosen under the condition, the existence and uniqueness of numerical solution is
    assured.


    Abstract i Contents ii 1 Introduction 1 2 Surface Motion by Surface Diffusion 2 2.1 The Preservation of Area . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 The Decrease of Arc Length . . . . . . . . . . . . . . . . . . . . . 6 3 Numerical Scheme 8 4 Numerical Results 16 4.1 Convergence Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 The Embedded Curve . . . . . . . . . . . . . . . . . . . . . . . . 20 4.4 Curve with Cusps . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Conclusion 27 References 2

    [1] E. B‥ansch, P. Morin and R. H. Nochetto, A finite element method for surface
    diffusion: the parametric case. Journal of Computational Physics 203 (2005),
    pp.321-343.
    [2] Xinfu Chen and Jong-Shenq Guo (2010).Motion by curvature of planar curves
    with end points moving freely on a line.
    [3] C.M Elliott and S. Maier-Paape, Losing a graph with surface diffusion. Hok-
    kaido Math. J. 30 (2001) 297-305.
    [4] S. H. Friedberg, A. J. Insel and L. E. Spence (2003). LINEAR ALGEBRA (4th
    ed.). New Jersey: Prentice Hall, pp. 295-296.
    [5] Y. Giga and K. Ito. On pinching of curves moved by surface diffusion. Com-
    mun. Appl, Anal. 2 (1998) 393-405.
    [6] F. J. Humphreys and M. Hatherly (1995). Recrystallization and related annealing
    phenomena, Elsevier.
    [7] M.-C. Lai, C.-W. Hsu and H. Huang. A front-tracking method for motion
    by mean curvature with surfactant. Adv. Appl. Math. Mech., 2 (2009), pp.
    288-300.
    [8] W. W. Mullins, Theory of thermal grooving. Journal of Applied Physics,
    28(1957), 333-339.
    [9] Zhenguo Pan and Brian Wetton. Numerical methods for coupled surface and
    grain boundary motion. European Journal of Applied Mathematics (2008),
    19: 311-327.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE