簡易檢索 / 詳目顯示

研究生: 楊昌達
Yang, Chang-Ta
論文名稱: 整合金屬閘極與高介電係數材料以改善靜態隨機存取記憶體單元胞穩定度之研究
Integration of Metal Gate Electrode and High-K Gate dielectric for Improved SRAM Unit Cell Stability
指導教授: 張廖貴術
Chang-Liao, Kuei-Shu
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 112
中文關鍵詞: 整合金屬閘高介電係數靜態隨機存取記憶體穩定度
外文關鍵詞: Integration, Metal Gate, High-K, SRAM, Stability
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了持續改善元件的性能,元件的尺寸被要求越來越小,一些新穎的元件已經被提出,例如全空乏絕緣層上覆矽和對稱型雙閘極電晶體。具有中間能階工函數的金屬閘電極HfxTaySizN已經發展出具有優異的熱穩定度。更進一步研究發現,Hf0.19Ta0.41Si0.26N0.14 金屬閘電極展現出了良好的電性如遲滯效應、介面捕獲電荷密度、壓力誘發型漏電流和絕佳的熱穩定度。
    本論文研究的重點同時放在高介電值介電層和金屬閘極的材料選擇上。我們也研究出HfTaN閘電極應用在SiO2和HfOxNy介電層上顯示出令人滿意的熱穩定度。二次離子質譜儀(SIMS)結果發現,相較於在氮氧化鉿閘極介電層,鉿和鉭的擴散深度在二氧化矽中顯示比較不明顯。在電性上,相較於氮氧化鉿閘極介電層,二氧化矽閘極介電層具有比較好的表現例如漏電流、遲滯效應、介面捕獲電荷密度、平帶電壓變化量。隨著金屬化後之退火處理的溫度增加,二氧化矽閘極介電層所形成的元件特性,也仍然具有良好的電性和熱穩定度。
    隨著製程技術不斷的微縮,靜態隨機存取記憶體(SRAM)的穩定度在單位晶胞的設計上顯得相對重要。靜態雜訊邊界(Static Noise Margin, SNM)可視作靜態隨機存取記憶體穩定度預測的一個指標。本論文提供了一個新的方法來預測靜態隨機存取記憶體的穩定度和特性。針對HfTaN閘電極應用在SiO2和HfOxNy介電層上,我們順著新提出的方法,來驗證靜態隨機存取記憶體的穩定度和預測電性。結果發現,高介電值介電層和金屬閘極的材料選擇上是有利於靜態隨機存取記憶體的應用發展。研究結果同時也顯示這觀念同時也適用於深次微米以及奈米級的領域。


    To continuously improve device performance with the shrinkage of device dimension, some novel devices like the fully-depleted silicon-on-insulator (FD-SOI) and symmetric double gate (SDG) transistor have been proposed. Various HfxTaySizN metal gate electrodes were developed to achieve work function near the mid-gap and excellent thermal stability. Furthermore, Hf0.19Ta0.41Si0.26N0.14, demonstrated excellent electrical performances in hysteresis effect, interface trap density, stress-induced leakage current and excellent thermal stability as well.
    The characteristics of integration of high-k gate dielectric and metal gate electrode are also studied. Interaction of HfxTayN metal gate with SiO2 and HfOxNy gate dielectrics has been extensively studied. Metal-oxide-semiconductor (MOS) device formed with SiO2 gate dielectric and HfxTayN metal gate shows satisfactory thermal stability. Secondary ion mass spectroscopy (SIMS) analysis results show that the diffusion depths of Hf and Ta are less significant in SiO2 gate dielectric than that in HfOxNy. Compared to HfOxNy gate dielectric, SiO2 shows better electrical properties, such as leakage current, hysteresis, interface trap density and stress-induced flatband voltage shift. With an increase in post metallization annealing (PMA) temperature, the electrical characteristics of the MOS device with SiO2 gate dielectric remain almost unchanged, indicating its superior thermal and electrical stability.
    As the process technology continues to scale, the stability of SRAM is a growing concern in the cell design. Static noise margin (SNM) can serve as a figure of merit in stability evaluation of SRAM cells. A new methodology is proposed to evaluate SRAM cell stability and cell performance to optimize cell design. The sensitivity of SRAM static noise margin and write margin are also studied based on metal gate “HfTaN” with different gate dielectric layer “SiO2” and “HfOxNy” process to develop an SRAM cell stability fault model concept and evaluate SRAM performance. Application of high-k and metal gate is profitable for SRAM application. This result is helpful for usage of high-k and metal gate stacks in sub-45nm and behind.

    Contents Abstract ……………………………………………………………..…….. I 摘要 ………………………………………………………………..………. III Acknowledgment ………………………………………………………….. IV Contents …………………………………………………………………… V Table Captions ……………………………………………………………. VIII Figure Captions …………………………………………………………… IX Chapter 1 Introduction __________________________________________________ 1 1.1 High-k Gate Dielectric …………………………………………………… 1 1.1.1 Why use high-k gate dielectric layer 1.1.2 Some promising gate dielectric layers with high-k gate dielectric 1.2 Metal gate electrode …………………………………………………….. 3 1.2.1 Recent study of metal gate electrode 1.2.2 Motivation to study the metal gate electrode 1.2.3 Challenges of High-k dielectric and metal gate electrode 1.3 SRAM introduction and motivation …………………………………….. 5 1.3.1 Moore’s Law 1.3.2 SRAM Design Tradeoffs 1.3.3 Area and Stability 1.3.4 Review of contemporary SRAM bit cell design methodology 1.3.5 Motivation to study SRAM with High-k metal gate stack 1.3.6 Relationship between threshold voltage and work function 1.3.7 Cell stability with work function 1.3.8 Variation with cell stability 1.3.9 The Monte-Carlo simulation for SRAM application 1.4 Outline of this thesis …………………………………………………… 12 Chapter 2 Experiment and Simulation Details ______________________________ 16 2.1 Manufacturing process flow of MOS capacitor with metal gate electrode HfxTaySizN ………………………………………………………………… 16 2.1.1 Laser Mark and zero layer exposure 2.1.2 Definition of active region 2.1.3 Thermal oxidation of SiO2 gate dielectric 2.1.4 Deposition metal gate electrode HfTaSiN 2.2 Manufacturing process flow of MOS capacitor with metal gate electrode HfTaN and gate dielectric HfOxNy or SiO2 ……………………………………………. 18 2.2.1 Laser Mark and zero layer exposure 2.2.2 Define active region 2.2.3 Thermal oxidation of dielectric SiO2 layer 2.2.4 Deposition of metal gate electrode HfTaN 2.3 Electrical property measurement of MOS capacitor …………………….. 19 2.3.2 Measurement of Hysteresis effect 2.3.3 Measurement of Stress-Induced Leakage Current (SILC) 2.3.4 Extraction of Work Function for metal gate 2.3.5 Interface Trap Density, (Dit) 2.4 Physical characteristics and material analysis of MOS Capacitors ………. 22 2.4.1 X-ray Diffractometer 2.4.2 Secondary Ion Mass Spectrometer (SIMS) 2.5 SRAM performance simulation by hspice simulator ……………………. 23 2.6 Simulation work for work function option ………………………………. 24 Chapter 3 Electrical Characteristics and Thermal Stability of HfxTaySizN Metal Gate Electrode for Advanced MOS Devices _____________________________ 29 3.1 Introduction ………………………………………………………………. 29 3.2 Experimental ……………………………………………………………… 30 3.3 Results and Discussion …………………………………………………… 31 3.3.1 Effects of various Hf compositions in HfTaSiN 3.3.2 Thermal stability of HfxTaySizN gate electrodes 3.4 Conclusions ………………………………………………………………. 35 Chapter 4 Integration of HfxTayN metal gate with SiO2 and HfOxNy gate dielectrics for MOS device applications _______________________________________ 48 4.1 Introduction ……………………………………………………………… 48 4.2. Experimental ……………………………………………………………. 49 4.3 Results and discussion …………………………………………………… 51 4.4 Conclusion ………………………………………………………………. 53 Chapter 5 Characteristics and cell stability of SRAM _________________________ 59 5.1 Introduction -SRAM functional operation diagram ……………………... 59 5.1.1 SRAM Architecture and schematic 5.1.2 SRAM bitcell performance 5.1.2.1 Read Operation 5.1.2.2 Write operation 5.1.3 SRAM bitcell characteristics and key parameters 5.1.3.1 Cell current 5.1.3.2 Standby current 5.1.3.3 Bitline loading 5.1.4 SRAM Cell Stability 5.1.4.1 Read Stability 5.1.4.2 Write Ability 5.1.5 Statistical Analysis of SRAM Cell Stability 5.2 Vccmin definition and methodology to estimate Vccmin ……………….. 65 5.2.1 Vccmin definition 5.2.2 Vccmin simulation methodology 5.2.3 Simulation condition and Solution approach 5.2.4 SRAM characteristics simulation flow 5.2.5 Variability and performance 5.2.6 Basic criteria for corner simulation 5.3 SRAM cell performance based on high-k and metal gate ……………….. 68 5.3.1 Background introduction 5.3.2 Simulation methodology and experimental conditions 5.3.2.1 Design of experiments for high-k and metal gate stack 5.3.3 SRAM characteristics with HfOxNy gate dielectric and Hf0.27Ta0.58N0.15 5.4. High-k and metal gate usage on characteristics of SRAM ………………. 71 5.5 Summary …………………………………………………………………. 74 Chapter 6 Conclusions ___________________________________________________ 96 6.1 Conclusions of high-k and metal gate …………………………..……… 96 6.2 Suggestions on Future Work ……………………………………………... 97 Reference_____________________________________________________ 99 Publication Lists of Chang-Ta Yang_______________________________ 111

    Reference

    [1] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito, and H. Iwai, “Tunneling gate oxide approach to ultra-high current drive in small geometry MOSFETs,” in IEDM Tech. Dig., pp.593-597, 1994.
    [2] International Technology Roadmap for Semiconductors, 2007
    [3] C. Y. Wong, J. Y. Sun, Y. Taur, C. S. Oh, R. Angelucci, and B. Davari, “Doping of n+ and p+ polysilicon in a dual-gate CMOS process,” in IEDM Tech. Dig., pp. 238 -241 (1988).
    [4] B. Yu, D. H. Ju, W. C. Lee, N. Kepler, T.J. King and C.M. Hu, “Gate engineering for deep-submicron CMOS transistors,” IEEE Trans. Electron Devices, vol. 45, no.6, pp.1253-1262, 1998.
    [5] T. Hori, “Gate Dielectrics and MOS ULSIs: Principles, Technologies, and Applications,” Springer-Verlag, Berlin, Germany, 1997.
    [6] H. R. Huff, A. Hou, C. Lim, Y. Kim, J. Barnett, G. Bersuker, G. A. Brown, C. D. Young, P. M. Zeitzoff, J. Gutt, P. Lysaght, M. I. Gardner and R. W. Murto, “Integration of high-k gate stacks into planar scaled CMOS integrated circuits,” Microelectronic Engineering, vol. 69, pp.152, 2003.
    [7] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” Journal of Applied Physics vol. 89, pp.5243, 2001.
    [8] H. Y. Yu, J. F. Kang, C. Ren, J. D. Chen, Y. T. Hou, C. Shen, M. F. Li, D. S. H. Chan, K. L. Bera, C. H. Tung, and D. L. Kwong, “Robust high-quality HfN-HfO2 gate stack for advanced MOS devices applications,” IEEE Electron Device Lett., Vol. 25, pp.70-72, 2004.
    [9] P. S. Lysaght, P. J. Chen, R. Bergmann, T. Messina, R. W. Mutro, and H.R. Huff, “Experimental observations of the thermal stability of high-k gate dielectric materials on silicon,” Journal of Non-Crystalline Solids, 303, pp.54-63, 2002.
    [10] P. Lysaght, B. Foran, S. Stemmer, G. Bersuker, J. Bennett, R. Tichy, L. Larson and H. R. Huff, “Thermal response of MOCVD hafnium silicate,” Microelectronic Engineering, vol. 69, pp.182, 2003.
    [11] P. S. Lysaght, B. Foran, G. Bersuker, P. Chen, R. W. Murto, and H. R. Huff, “Physicochemical properties of HfO2 in response to rapid thermal anneal,” Appl. Phys. Lett., vol. 82, pp.1266, 2003.
    [12] A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, T. Kauerauf, Y. Kim, A. Hou, G. Groeseneken, H. E. Maes and U. Schwalke, “Origin of the threshold voltage instability in SiO2/HfO2 dual layer gate dielectrics,” IEEE Electron Device Lett., vol. 24, pp. 87-89, 2003
    [13] C. Hobbs, L. Fonseca, V. Dhandapani, S. Samavedam, B. Taylor, J. Grant, L. Dip, D. Triyoso, R. Hegde, D. Gilmer, R. Garcia, D. Roan, L. Lovejoy, R. Rai, L. Hebert, H. Tseng, B. White, and P. Tobin, “Fermi level pinning at the polySi/metal oxide interface,” in VLSI Tech. Symp., pp. 9-10, June 2003.
    [14] H. Ono, and K. Koyanagi, “Formation of silicon–oxide layers at the interface between tantalum oxide and silicon substrate,” Appl. Phys. Lett., vol.75, pp.3521, 1999.
    [16] V. Misra, G. Lucovsky, and G. Parsons, "Issues in high-k gate stack interfaces", MRS Bulletin 27, pp.212-216, 2002.
    [17] B. H. Lee, R. Choi, L. Kang, S. Gopalan, R. Nieh, K. Onishi, Y. Jeon, W. J. Qi, C. S. Kang, and J. C. Lee, “Characteristics of TaN gate MOSFET with ultra-thin hafnium oxide”, in IEDM Tech Dig., pp.39, 2000.
    [18] Y-S. Suh, G.P. Heuss and V. Misra, "Electrical characteristics of TaSiN for Dual Gate CMOS", IEEE Symposium on VLSI Technology, pp. 47-48, 2001
    [19] Y. H. Kim, C. H. Lee, T. S. Jeon, W. P. Bai, C. H. Choi, S. J. Lee, L. Xinjian, R. Clarks, D. Roberts,and D. L. Kwong, “High quality CVD TaN gate electrode for sub-100 nm MOS devices,” IEDM Tech. Dig., pp.667, 2001.
    [20] I. Polishchuk, P. Ranade, and C. Hu, “Dual Work Function Metal Gate CMOS Metal Interdiffusion,” IEEE Electron Device Lett., vol. 22, pp.444-446, 2001
    [21] D. Gendt, “Advanced gate stacks: high-k dielectrics and metal gates,” in IEDM Tech. Dig, Short Course, 2004.
    [22] A. Meixner and J. Banik, “Weak write test mode: An SRAM cell stability design for test technique,” In Proc. IEEE International Test Conference (ITC), pp.1043–1052, November 1997.
    [23] D.-M. Kwai, H.-W. Chang, H.-J. Liao, C.-H. Chiao, and Y.-F. Chou, “Detection of SRAM cell stability by lowering array supply voltage,” In Proc. of the Ninth Asian Test Symposium (ATS 2000), pp. 268–273, December 2000.
    [24] C. Kuo, T. Toms, B. T. Neel, J. Jelemensky, E. A. Carter, and P. Smith, “Soft-defect detection (SDD) technique for a high-reliability CMOS SRAM,” IEEE Journal of Solid-State Circuits (JSSC), vol. 25, pp.61–67, February 1990.
    [25] ITRS. International Technology Roadmap for Semiconductors (ITRS-2004) update; http: //www.itrs.net/common/2004update/2004update.htm.
    [26] G. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38 pp.114–117, October 1965.
    [27] C. Lage, J. D. Hayden, and C. Subramanian, “Advanced SRAM technology- the race between 4T and 6T cells,” in IEDM, pp. 271-274, 1996.
    [28] K. Itoh, K. Sasaki, and Y. Nakagome, “Trends in low-power RAM circuit technologies,” Proceedings of the IEEE, Vol. 83, pp. 524-543 April 1995.
    [29] E. Seevinck, F. List, and J. Lohstroh, "Static-Noise. Margin Analysis of MOS SRAM Cells," JSSC, Vol. SC-. 22, No. 5, pp. 748-754, Oct. 1987.
    [30] A.J. Bhavnagarwala, T. Xinghai, and J.D. Meindl, “The impact of intrinsic device fluctuations on CMOS SRAM cell stability,” IEEE Journal of Solid-State Circuits, Vol. 36, pp. 658-665, April 2001.
    [31] A. Bhavnagarwala, and J. Meindl, “Fluctuation Limits on Scaling of CMOS SRAMs,” ISSCC Dig. of Tech., pp. 232-233, Feb. 1997.
    [32] T. B. Hook, M. Breitwisch, J. Brown, P. Cottrell, D. Hoyniak, C. Lam, and R. Mann, “Noise Margin and Leakage in Ultra-Low Leakage SRAM Cell Design,” IEEE Transactions on Electron Devices, pp.1499-1501, 2002.
    [33] K. Agawa, H. Hara, T. Takayanagi, and T. Kuroda, “A bitline leakage compensation scheme for low-voltage SRAMs,” IEEE Journal of Solid-State Circuits, Vol. 36, pp. 726-734, May 2001.
    [34] Q. Wang and Sung-Mo Kang, "An Optimal Design of Leak-Proof SRAM Cell Using MCDM Method," SPIE's International Syposium on Microtechnologies for the New Millennium, Gran Canaria, Spain, Vol. 5117, pp.478-484 May 19-21, 2003,
    [35] D. W. Kang, and Y.-B. Kim, “A deep sub-micron SRAM cell design and analysis methodology,” Proceedings of the 44th IEEE 2001 Midwest Symposium on, Volume: 2, pp. 858 -861 Aug. 2001.
    [36] T. A. Fjeldly; T. Ytterdal, and M. S. Shur, “Introduction to device Modeling and Circuit Simulation,” John Wiley & Sons, New York, 1998.
    [37] R. W. Kelsall, “The Monte Carlo method for semiconductor device simulation” Physical Modeling of Semiconductor Devices, IEE Colloquium, Apr 1995.
    [38] M. Orshansky, J. C. Chen; and C. M. Hu; “A Statistical Performance Simulation Methodology for VLSI Circuits,” in Design Automation Conference, pp. 402-407, June 1998.
    [39] M. Christopher; and I. Mohammed, “Statistical Modeling of Device Mismatch for Analog MOS Integrated Circuits,” IEEE Journal of Solid-State Circuits, vol.27, no.2, pp.154-165, 1992.
    [40] S.-C. Wong, K.-H. Pan, and D.-J. Ma, “A CMOS Mismatch Model and Scaling Effects,” in IEEE Electron Device Letters, vol.18, no.6, pp.261-263, 1997.
    [41] “HSPICE MOSFET Models manual” Synopsys, 2003.
    [42] K. J. Kuhn, “22 nm Device Architecture and Performance Elements”, IEDM, short course, 2008,
    [43] H. Fujioka, “QMCV simulator,” online available http://www-device.eecs.berkeley.edu/qmcv/index.shtml
    [44] D. J. DiMaria and E. Cartier, “Mechanism for stress-induced leakage currents in thin silicon dioxide films,” J. Appl. Phys. Vol. 78, pp.3883-3894, 1995
    [45] S. Takagi, N. Yasuda, and A. Toriumi, “Experimental evidence of inelastic tunneling and new I–V model for stress-induced leakage current,” IEDM Tech Dig. pp.323–326, 1996.
    [46] E. Rosenbaum, L.F. Register, “Mechanism of Stress-Induced Leakage Current in MOS Capacitors,” IEEE Transactions, Electron Devices, vol. 44, pp. 317 – 323, 1997
    [47] S. Zafar, C. Cabral, Jr. R. Amos, and A. Callegari, “A method for measuring barrier heights, metal work functions and fixed oxide charge densities in metal/SiO2/Si capacitors,” Appl. Phys. Lett. 80, pp.4858-4860, 2002.
    [48] D. K. Schroder, “Semiconductor Material and Device Characterization”, 2nd ed., John Wiley & Sons, New York, 1998.
    [49] N. V. Nguyen, C. A. Richter, Yong Jai Cho, G. B. Alers and L. A. Stirling, “Effects of high-temperature annealing on the dielectric function of Ta2O5 films observed by spectroscopic ellipsometry” Appl. Phys. Lett., 77, pp. 3012, 2000.
    [50] P. Gao, L.J. Meng, M. P. dos Santos, V. Teixeira, and M. Andritschky, “Study of ZrO2-Y2O3 filmsprepared by rf magnetron reactive sputtering,” Thin Solid Films, pp.377-378, 32, 2000.
    [51] K. Kukli, J. Aarik, A. Aidla, O. Kohan, T. Uustare, and V. Sammelselg, “Properties of tantalum oxide thin films grown by atomic layer deposition”, Thin Solid Films, 260, pp.135, 1995.
    [52] M. Cassir, F. Goubin, C. Bernay, P. Vernoux, and D. Lincot, “Synthesis of ZrO2 thin films by atomic layer deposition: growth kinetics, structural and electrical properties”, Applied Surface Science, 193, pp.120–128, 2002.
    [53] C. M. Perkins, B. B. Triplett, P. C. McIntyre, K. C. Saraswat, S. Haukka, and M. Tuominen, “Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition,” Appl. Phys. Lett. 78, pp.2357, 2001.
    [54] C. Chaneliere, S. Four, J. L. Autran, and R. A. B. Devine, “Comparison between the Properties of amorphous and crystalline Ta2O5 thin films deposited on Si,” Microelectronics Reliability, 39, pp.261, 1999.
    [55] D. D. L. Chung, P. W. DeHaven, H. Arnold, and Debashis Ghosh, “X-Ray Diffraction at Elevated Temperatures: A Method for In-Situ Process Analysis, Chap.1, VCH Publishers”, New York, 1993.
    [56] Powder Diffraction File: Inorganic and Organic Data Book, PDF#19-1299, 25-0922, 25-1257, 25-1366, 27-1402, 34-1084, 42-0060, 42-1120, and 72-1088, JCPDS – International Center for Diffraction Data, American Society for Testing and Materials, Swarthmore, PA, 1950-2003.
    [57] Y. Nishi, R. Doering and T. Wooldrige, “Handbook of Semiconductor Manufacturing Technology”, Chap.28, Marcel Dekker, New York, 2000.
    [58]. A. Asenov, S. Kaya and A.R. Brown, “Simulation of Intrinsic Parameter Fluctuations in Decananometre and Nanometer Scale MOSFETs”, IEEE Trans. Elec. Dev., 50, pp. 1837-1852, 2003
    [59]. B. Cheng, S. Roy, and A. Asenov, “The impact of random doping effects on CMOS SRAM cell,” Proc. 30th European Solid-State Circuits Conf. (ESSCIRC), Leuven, Belgium, pp. 219–222, Sep. 2004.
    [60] Q. Hulfang, C. Yu, D. Markovic, A.Vladimirescu, and J. Rabaey, “SRAM leakage suppression by minimizing standby supply voltage, ” Quality Electronic Design, 2004. Proceedings. 5th International Symposium pp. 55–60, 2004.
    [61] P. E. Nicollian, M. Rodder, D. T. Grider, P. Chen, R. M. Wallace, and S. V. Hattangady, “Low voltage stress-induced-leakage-current in ultrathin gate oxides,” Proceedings of the International Reliability Physics Symposium, pp. 400, 1999.
    [62] J. P. Collinge, “Silicon-on-Insulator Technology: Material to VLSI,” 2nd ed. Norwell, MA: Kluwer, 1997.
    [63] M. Cao, T. Kamins, P. V. Voorde, C. Diaz, and W. Greene, “0.18-□m fully depleted silicon-on-insulator MOSFETs,” IEEE Electron Device Lett., vol. 18, no. 4, pp. 251–253, Apr. 1997.
    [64] K. Imai, H. Onishi, K. Yamaguchi, K. Inoue, Y. Matsubara, A. Ono, and T. Horiuchi, “A 0.18 □m fully depleted CMOS on 30 nm thick SOI for sub-1.0 V operation,” in Symp. VLSI Tech. Dig., pp. 116–117, 1998.
    [65] H. Shimada, Y. Hirano, T. Ushiki, K. Ino, and T. Ohmi, “Tantalumgate thin-film SOI nMOS and pMOS for low-power applications,” IEEE Trans. Electron Devices, vol. 44, no. 10, pp. 1903–1907, Oct. 1997.
    [66] B. Maiti, P. J. Tobin, C. Hobbs, R. I. Hegde, F. Huang, D. L. O'Meara, D. Jovanovic, M. Mendicino, J. Chen, D. Connelly, O. Adetutu, J. Mogab, J. Candelaria, and L. B. La, ”PVD TiN metal gate MOSFETs on bulk silicon and fully depleted silicon-on-insulator (FDSOI) substrates for deep sub-quarter micron CMOS technology”, in IEDM Tech. Dig., pp.781-784, 1998.
    [67] P. Ranade, Y.-K. Choi, D. Ha, A. Agarwal, M. Ameen, and T.-J. King, “Tunable Work Function Molybdenum Gate Technology for FDSOI-CMOS", in IEDM Tech. Dig., pp. 363–366, 2002.
    [68] S.H. Bae; W.P. Bai; H.C. Wen; S. Mathew; L.K. Bera; N. Balasubramanian; N. Yamada; M.F. Li and D.L. Kwong, “Laminated Metal Gate Electrode with Tunable Work Function for Advanced CMOS”, in VLSI Tec., pp.188-189, 2004.
    [69] M.-A. Nicolet and P.H. Giauque. “High metastable amorphous or near-amorphous ternary films”, Microelectron Eng. vol. 55, p.357-367, 2001.
    [70] J. Chen, B. Maiti, D. Connelly, M. Mendicino, F. Huang, O. Adetutu, Y. Yu, D. Weddington, W. Wu, J. Candelaria, D. Dow, P. Tobin, and J. Mogab, “0.18 mmetal gate fully depleted SOI MOSFETs for advanced CMOS applications,” in Symp. VLSI Tech. Dig., pp. 25–26, 1999.
    [71] H. Shimada, Y. Hirano, T. Ushiki, K. Ino, and T. Ohmi, “Tantalumgate thin-film SOI nMOS and pMOS for low-power applications,” IEEE Trans. Electron Devices, vol. 44, no. 10, pp. 1903–1907, Oct. 1997.
    [72] H. Y. Yu, H. F. Lim, J. H. Chen, M. F. Li, C. Zhu, C. H. Tung, A. Y. Du, W. D. Wang, D. Z. Chi, and D. L. Kwong, “Physical and electrical characteristics of HfN gate electrode for advanced MOS devices,” IEEE Electron Device Lett., vol. 24, no. 3, pp. 230–232, Mar. 2003.
    [73] M. S. Joo, B. J. Cho, N. Balasubramanian, and D. L. Kwong, “Thermal instability of effective work function in Metal/high-k stack and its material dependence,” IEEE Electron Device Lett., vol. 25, no. 11, pp. 716–718, Nov. 2004.
    [74] C. Ren, H. Y. Yu, J. F. Kang, Y. T. Hou, M. F. Li, W. D. Wang, D. S. H. Chan, and D. L. Kwong, “Fermi-level pinning induced thermal instability in the effective work function of TaN in TaN/SiO gate stack,” IEEE Electron Device Lett., vol. 25, no. 2, pp. 123–125, Feb. 2004.
    [75] T. Hara, T. Kitamura, M. Tanaka, T. Kobayashi, K. Sakiyama, S. Onishi, K. Ishihara, J. Kudo, V. Kino, and N. Yamashita , “Barrier Effect of TaSiN Layer for Oxygen Diffusion,” J. Electrochem. Soc., Vol. 143, no. 11, pp. L264-L266, 1996.
    [76] Y. S. Suh, G. Heuss, J. H. Lee, and V. Misra, “Effect of the composition on the electrical properties of TaSiN metal gate electrodes,” IEEE Electron Device Lett., vol. 24, pp. 439–441, 2003.
    [77] C. L. Cheng, K. S. Chang-Liao; T.C. Wang; T. K. Wang; C. H. Wang, “Thermal Stability of HfxTayN Metal Gate Electrodes for Advanced MOS Devices,” IEEE Electron Device Lett., vol. 27, pp. 148–150, 2006.
    [78] J.R. Hauser and K. Ahmed, Characterization Metrology ULSI Technology, pp. 230–235, 1998.
    [79] D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed., John Wiley & Sons, New York, 1998.
    [80] O'Connor, R. McDonnell, S. Hughes, G. Degraeve, R. Kauerauf, Thomas, “Low voltage stress-induced leakage current in 1.4–2.1 nm SiON and HfSiON gate dielectric layers,” Semi. Sci. Technol., vol.20, p.668-672, 2005.
    [81] International Technology Roadmap for Semiconductors, Semiconductor Industry association, San Jose, CA, 2001.
    [82] J. Chen, B. Maiti, D. Connelly, M. Mendicino, F. Huang, O. Adetutu, Y. Yu, D. Weddington, W. Wu, J. Candelaria, D. Dow, P. Tobin, and J. Mogab, “0.18 m metal gate fully-depleted SOI MOSFETs,” in Symp. VLSI Tech. Dig., pp.25–26, 1999.
    [83] H. Shimada, I. Ohshima, T. Ushiki, S. Sugawa, T. Ohmi, “Tantalum nitride metal gate FD-SOI CMOS FETs using low resistivityself-grown bcc-tantalum layer” IEEE Trans. Electron Devices, 48, pp.1619–1626, 2001.
    [84] M. F. Wang, Y. C. Kao, T. Y. Huang, H. C. Lin, and C. Y. Chang,“Thermal stability of PVD TiN gate and its impacts on characteristic ofCMOS transistors,” in Int. Symp. P2ID, pp. 36–39, 2001.
    [85] J. Westlinder, T. Schram, L. Pantisano, E. Cartier, A. Kerber, G. S. Lujan, J. Olsson, and G. Groeseneken, “On the Thermal Stability of Atomic Layer Deposited TiN as Gate Electrode in MOS Devices,” IEEE Electron Dev. Lett. 24, 550, 2003.
    [86] C. L. Cheng, K. S. Chang-Liao, T. C. Wang, T. K. Wang, and C. H. Wang, “Thermal Stability of HfxTayN Metal Gate Electrodes for Advanced MOS Devices,” IEEE Electron Device Letters, Vol. 27, No. 3, pp.148-150, March, 2006.
    [87] A. Morioka, H. Watanabe, M. Miyamura, T. Tatsumi, M. Saitoh, T. Ogura, T. Iwamoto, T. Ikarashi, Y. Saito, Y. Okada, Y. Mochiduki, and T. Mogami, “High mobility MISFET with low trapped charge in HfSiO films,” in IEEE Symp. VLSI Tech. Dig., pp. 165–166, 2003.
    [88] T. Nabatame, K. Iwamoto, H. Ota, K. Tominaga, H. Hisamatsu, T. Yasuda, K.Yamamoto,W. Mizubayashi, Y. Morita, N.Yasuda, M. Ohno, T. Horikawa, and A. Toriumi, “Design and proof of high quality HfAlOx film formation for MOSCAPs and nMOSFETs through Layer-by-Layer Deposition and Annealing process” in VLSI Tech. Dig., pp.25-26, 2003.
    [89] H. Kim, A.F. Marshall, P.C. McIntyre, and K.C. Saraswat, "Crystallization Kinetics and Microstructure-Dependent Leakage Current Behavior of Ultrathin HfO2 Dielectrics: In Situ Annealing Studies," Appl. Phys. Lett. 84, pp.2064-66, 2004.
    [90] G. D. Wilk, and R. M. Wallace, “Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon,” Appl. Phys. Lett., 74, pp.2854-2856, 1999.
    [91] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B, Microelectron.Process. Phenom., 18, pp.1785–1791, 2000.
    [92] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., 11, pp.2757, 1996.
    [93] C. H. Choi, S. J. Rhee, T. S. Jeon, N. Lu, J. H. Sim, R. Clark, M. Niwa and D. L. Kwong, “Thermally stable CVD HfOxNy advanced gate dielectrics with poly-Si gate electrode,” in IEDM, pp.857, 2002
    [94] C. Y. Kang, S. J. Rhee, C. H. Choi, M. S. Akbar, M. Zhang, T. Lee, I. Ok, J. C. Lee, "Effects of nitrogen-incorporated interface layer on the transient characteristics of hafnium oxide n-metal-oxide-semiconductor field-effect transistors", Appl. Phys. Lett. 86, 123506, 2005.
    [95] Y. Y. Wu, A. Kohn, and M. Eizenberg, "Structures of Ultra Thin Atomic Layer Deposited TaNx Films", J. Appl. Phys., 95, pp.6167–6174, 2004.
    [96] X. Wang, J. Liu, F. Zhu, N. Yamada, and D. L. Kwong, “A simple approach to fabrication of high-quality HfSiON gate dielectric with improved nMOSFET performances,” IEEE Trans. Electron Devices, vol. 51, pp. 1798-1804, 2004..
    [97] V. Misra, G. P. Heuss, and H. Zhong, “Use of metal–oxide–semiconductor capacitors to detect interactions of Hf and Zr gate electrodes with SiO2 and ZrO2,” Appl. Phys. Lett., 78, p. 4166, 2001.
    [98] E. H. Nicollian and J. R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology,” New York: Wiley, 185–197, 1982.
    [99] J. H. Stathis and D. J. DiMaria, “Reliability projection for ultra-thin oxides at low voltage,” IEDM Tech. Dig., pp.167-170, 1998.
    [100] N. Azizi, and A. Moshovos, F.N. Najm, “Low-leakage asymmetric-cell SRAM,” Low Power Electronics and Design, 2002. ISLPED ''02. Proceedings of the 2002 International Symposium on, pp.48 - 51 Aug. 2002.
    [101] Y. S. Lin, C. C. Wu, C. S. Chang, R. P. Yang, W. M. Chen, J. J. Liaw, and C. H. Diaz, “Leakage scaling in deep submicron CMOS for SoC” Electron Devices, IEEE Transactions on, Volume 49, pp. 1034 —1041, June 2002.
    [102] K. Agawa, H. Hara, T. Takayanagi, and T. Kuroda, “A bitline leakage compensation scheme for low-voltage SRAMs,” Solid-State Circuits, IEEE Journal, Volume 36, pp. 726-734, May 2001.
    [103] E. Grossar, M. Stucchi, K. Maex, and W. Dehaene, "Read Stability and Write-Ability Analysis of SRAM Cells for Nanometer Technologies," IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2577-2588, November 2006.
    [104] B. H. Calhoun and A. P. Chandrakasan, "Static Noise Margin Variation for Sub-threshold SRAM in 65-nm CMOS," IEEE J. Solid-State Circuits, vol. 41, no. 7, pp.1673-1679, July 2006.
    [105] A. Raychowdhury, S. Mukhopadhyay, and K. Roy, "A Feasibility Study of Sub-threshold SRAM Across Technology Generations," in IEEE Proc. ICCD, pp. 417-412, October 2005.
    [106] R. Heald and P. Wang, "Variability in Sub-100nm SRAM Designs," in IEEE/ACM Proc. ICCAD, pp. 347-352, November 2004.
    [107] D. Burnett, K. Erington, C. Subramanian, and K. Baker, “Implications of fundamental threshold voltage variations for high-density SRAM and logic circuits”, Symp on VLSI Tech, pp. 15-16, 1994.
    [108] B. Cheng, S. Roy, and A. Asenov, “The impact of random doping effects on CMOS SRAM cell”, European Solid State Circuits Conf, pp. 219-222, 2004.
    [109] M. Pelgrom, A. Duinmaijer, and A. Welbers, “Matching properties of MOS transistors”, JSSC, pp. 1433-1440, 1989.
    [110] T. Mizuno, J. Okamura, and A. Toriumi, “Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFETs”, IEEE Trans on Electron Devices, pp. 2216-2221, 1994.
    [111] K. Lakshmikumar, R. Hadaway, and M.A. Copeland, “Characterization and modeling of mismatch in MOS transistors for precision analog design”, JSSC, pp. 1057-1066, 1986.
    [112] A. Bhavanagarwala, X. Tang, and J. Meindl, “The impact of intrinsic device fluctuations on CMOS SRAM cell stability, JSSC, pp. 658-665, 2001.
    [113] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of failure probability and statistical design of SRAM array for yield enhancement in nanoscale CMOS”, IEEE Trans on Computer-Aided Design, pp. 1859-1880, 2005.
    [114] S. Nobuyuki, T. Ryuta, I. Takashi, M. Yusuke, Y. Hiroyuki, T. Kazuyoshi, and K. Shinichiro, “Comprehensive Study on Vth Variability in Silicon on Thin BOX (SOTB) CMOS with Small Random-Dopant Fluctuation: Finding a Way to Further Reduce Variation”, IEEE IEDM, pp. 249-252, 2008.
    [115] T. Merelle, G. Curatola, A. Nackaerts, N. Collaert, M. D. Van, and G. Doornbos, “First observation of FinFET specific mismatch behavior and optimization guidelines for SRAM scaling”, IEDM, pp. 241-244, 2008
    [116] N. Sugii, R. Tsuchiya, T. Ishigaki, Y. Morita, H. Yoshimoto, K. Torii, and S. Kimura:, “Comprehensive Study on Vth Variability in Silicon on Thin BOX(SOTB) CMOS with Small Random-Dopant Fluctuation: Finding a Way to Further Reduce Variation”, IEDM, 2008, pp. 249-252

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE