簡易檢索 / 詳目顯示

研究生: 王傳勛
Wang, Chuan-Hsun
論文名稱: 噴墨印刷技術用於二硫化鉬及石墨烯的可彎曲基板之光電探測器與層狀控制能源儲存裝置之研究
Layered Control Process Of Two-Dimensional Materials On Flexible Substrates Using Ink-Jet Printing Technology Toward Photodetectors And Energy Storage Devices
指導教授: 邱博文
CHIU, PO-WEN
闕郁倫
CHUEH, YU-LUN
口試委員: 洪瑞華
Horng, Ray-Hua
顏文群
YEN, WEN-CHUN
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 57
中文關鍵詞: 噴墨印刷技術
外文關鍵詞: ink-jet print
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本題目主要是針對噴墨印刷技術應用的開發,主要是利用現今熱門的二維材料去加以應用,其中石墨稀和二硫化鉬現在是備受矚目的二維材料,由於其特別的結構及在薄膜電晶體和電化學儲能方面有許多團隊有深入的研究
    二硫化鉬在鋰電池的陽極應用中,在充放電的過程中使得二硫化鉬的結構瓦解,使得循環壽命不佳,因此在許多文獻將碳或是石墨烯透或化學合成方法加入二硫化鉬形成異質結構,但也因此需要花費較長的合成時間。在本題目將二硫化鉬和石墨稀分別製造成可噴塗的墨水,透過噴墨印刷技術將二硫化鉬和石墨稀印刷成型,形成層層交錯堆疊的二硫化鉬/石墨稀異質結構,在此研究中鋰離子電池經過460次的循環後還保持806 mAh/g 的電容量在0.6 A/g的電流下,相較於一般塗佈的方法下有較優異的電容量和壽命;另外在鈉離子電池的陽極應用中經過668次的循環後還保持510 mAh/g 的電容量在0.6 A/g的電流下,相較於一般塗佈的方法下有較優異的壽命。
    本題目不僅將噴墨印刷應用在儲能方面,也製作出全噴墨印刷的光電感測器,由於以往感測器都需要多道製程需要較多的時間和較高的成本,但是利用噴墨印刷技術能夠快速製作出感測器,同時也能降低成本,用來驗證科學實驗的可行性。在全噴墨印刷的光電感測器中展現出4、3 和2nA 的光電在632、515和404 nm波長的雷射中 (雷射功率= 10mW,Vds= 3V) 在玻璃基板上,另外還製作了可彎曲的光電感測器在聚醯亞胺(PI)基板上,經過了500次的彎折後,光電流還保持2nA在404 nm波長的雷射中 (雷射功率= 10mW,Vds= 3V)。


    This thesis is mainly for the development of inkjet printing technology applications, mainly using two-dimensional materials to apply, among which Graphene and Molybdenum disulfide is now a high-profile two-dimensional material, due to its special structure and There are many teams with in-depth research on thin film transistors and electrochemical energy storage.
    In the Li-ion battery anode’s application, the MoS2 structure is collapsed during the charging and discharging process, resulting in poor cycle life. Therefore, in many literatures, carbon or graphene is added to the MoS2 by chemical synthesis to form a heterostructure, but it also takes a long time to syn-thesize. In this thesis, MoS2 and Graphene are separately made into printable ink, and MoS2 and Gra-phene ink are printed by inkjet printing technology to form a heterostructure of MoS2 /Graphene which is stacked in layers. In this study, the Li-ion battery maintained a capacitance of 806 mAh/g at a current of 0.6 A/g after 460 cycles, which has batter capacitance and lifetime compared to the general coating method; In the Na-ion battery anode application, after 668 cycles, the capacity of 510 mAh/g was maintained at a current of 0.6 A/g, which was superior to the general coating method.
    Not only applies inkjet printing to energy storage, but also produces a full-inkjet print photodetec-tor. Since the previous sensors require multiple processes, more time and higher cost are required, but the use of the Ink-jet printing technology can quickly produce sensors, while also reducing costs, to verify the feasibility of scientific experiments. 4, 3, and 2nA of photocurrent in full inkjet printed pho-todetector at 632, 515, and 404 nm wavelengths (laser power = 10 mW, Vds = 3 V) on glass substrates, A flexible photodetector was fabricated on a polyimide substrate. After 500 bends, the photocurrent was maintained at 2 nA in a 404 nm laser (laser power = 10 mW, Vds). = 3V).

    摘要 i Abstract ii Table of Contents iii List of Figures vi List of Tables xii Chapter 1. Introduction 1 1.1 Lithium Ion & Sodium Ion Battery 1 1.1.1 Lithium Ion battery overview 1 1.1.2 Sodium Ion Battery overview 1 1.1.3 Working Mechanism 2 1.2 2D Material 3 1.2.1 Graphene’s Properties 3 1.2.2 MoS2’s Properties 5 1.3 Graphene/MoS2 In Lithium & Sodium Ion battery 5 1.3.1 In Lithium Ion Battery 5 1.3.2 In Sodium Ion Battery 11 1.4 Ink-jet print 14 1.4.1 Ink-jet print overview 14 1.4.2 Ink-jet print with battery 14 1.4.3 Ink-jet printer with detector 15 Chapter 2. Motivation 16 2.1 Ion battery 16 2.1.1 Advantages of Ink-jet printer 16 2.2 Phototdetector 16 2.2.1 Advantages of Ink-jet printer 16 Chapter 3. Material analysis method and theory 17 3.1 Material analysis 17 3.1.1 Raman Spectroscopy 17 3.1.2 X-Ray Diffraction, XRD 18 3.1.3 Scanning Electron Microscopy (SEM) 19 3.2 Electrical measurement 20 3.2.1 Battery cycling test (LANHE CT2001A) 20 3.2.2 cyclic voltammetry (CV) 20 3.2.3 Electrochemical Impedance Spectroscopy (EIS) 21 Chapter 4. Experiment Section 23 4.1 Battery part 23 4.1.1 Synthesis Molybdenum disulfide 23 4.1.2 Prepare Ink-jet print Molybdenum disulfide nanoflower and Graphene ink. 24 4.1.3 Printing Molybdenum disulfide and Graphene ink for anode’s paten. 25 4.1.4 fabrication of coin cell 25 4.2 Photodetector part 26 4.2.1 Prepare Ink-jet print Molybdenum disulfide powder and Graphene ink. 26 4.2.2 Printing Molybdenum disulfide and Graphene ink for photodetectors. 27 4.2.3 Bending PI substrate photodetector 27 Chapter 5. Result and Discussion in ion battery 28 5.1 Molybdenum disulfide nanoflower analysis 28 5.1.1 SEM image of Molybdenum disulfide 28 5.1.2 X-Ray Diffraction of Molybdenum disulfide 29 5.1.3 Raman Spectroscopy of Molybdenum disulfide nanoflower 30 5.2 Graphene ink analysis 31 5.2.1 SEM image of Graphene 31 5.2.2 Raman Spectroscopy of Graphene 31 5.3 Ink-jet printing 32 5.3.1 Ink and printing characteristic 32 5.3.2 SEM image of Ink-jet printing 35 5.4 Li-ion Battery test 36 5.4.1 cyclic voltammetry test 36 5.4.2 Electrochemical Impedance Spectroscopy test 38 5.4.3 Cycle test 39 5.5 Na-ion Battery test 40 5.5.1 cyclic voltammetry test 40 5.5.2 Electrochemical Impedance Spectroscopy test 42 5.5.3 Cycle test 42 5.6 Mechanism of ink-jet printing battery. 43 5.6.1 Diffusion energy barrier 43 5.6.2 Binding energy (adhesion). 45 Chapter 6. Result and Discussion photodetector 47 6.1 Molybdenum disulfide powder and printing analysis 47 6.1.1 MoS2 powder characteristic 47 6.1.2 Raman Spectroscopy of MoS2 powder 47 6.1.3 Ink and printing characteristic 48 6.2 Electrical measurement of photodetector. 49 Chapter 7. Conclusion 53 7.1 Ion battery part 53 7.2 Photodetector part. 53 Reference 54

    1. Nitta, N., et al., Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
    2. Luo, W., et al., Na-Ion Battery Anodes: Materials and Electrochemistry. Accounts of Chemical Research, 2016. 49(2): p. 231-240.
    3. Yabuuchi, N., et al., Research Development on Sodium-Ion Batteries. Chemical Reviews, 2014. 114(23): p. 11636-11682.
    4. Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243-3262.
    5. Allen, M.J., V.C. Tung, and R.B. Kaner, Honeycomb Carbon: A Review of Graphene. Chemical Reviews, 2010. 110(1): p. 132-145.
    6. Raccichini, R., et al., The role of graphene for electrochemical energy storage. Nature materials, 2015. 14(3): p. 271.
    7. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6: p. 183.
    8. Zhu, Y., et al., Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 2010. 22(35): p. 3906-3924.
    9. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9): p. 351-355.
    10. Baugher, B.W.H., et al., Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS2. Nano Letters, 2013. 13(9): p. 4212-4216.
    11. Jiang, L., et al., Monolayer MoS2–graphene hybrid aerogels with controllable porosity for lithium-ion batteries with high reversible capacity. ACS applied materials & interfaces, 2016. 8(4): p. 2680-2687.
    12. Li, H., et al., MoS2/graphene hybrid nanoflowers with enhanced electrochemical performances as anode for lithium-ion batteries. The Journal of Physical Chemistry C, 2015. 119(14): p. 7959-7968.
    13. Teng, Y., et al., MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS nano, 2016. 10(9): p. 8526-8535.
    14. Wang, X., et al., Sulfur Atoms Bridging Few‐Layered MoS2 with S‐Doped Graphene Enable Highly Robust Anode for Lithium‐Ion Batteries. Advanced Energy Materials, 2015. 5(23): p. 1501106.
    15. Sun, D., et al., MoS2/Graphene Nanosheets from Commercial Bulky MoS2 and Graphite as Anode Materials for High Rate Sodium‐Ion Batteries. Advanced Energy Materials, 2018. 8(10): p. 1702383.
    16. Wang, G., et al., Vertically Aligned MoS2 Nanosheets Patterned on Electrochemically Exfoliated Graphene for High‐Performance Lithium and Sodium Storage. Advanced Energy Materials, 2018. 8(8): p. 1702254.
    17. Choi, S.H., et al., 3D MoS2–graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Advanced Functional Materials, 2015. 25(12): p. 1780-1788.
    18. Andò, B., et al., Low-cost inkjet printing technology for the rapid prototyping of transducers. Sensors, 2017. 17(4): p. 748.
    19. Wang, Y., et al., Lithium and lithium ion batteries for applications in microelectronic devices: A review. Journal of Power Sources, 2015. 286: p. 330-345.
    20. Sowade, E., et al., All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis. Scientific Reports, 2016. 6: p. 33490.
    21. Sen, U.K. and S. Mitra, High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS applied materials & interfaces, 2013. 5(4): p. 1240-1247.
    22. Xie, J., et al., Ambient rutile VO2(R) hollow hierarchitectures with rich grain boundaries from new-state nsutite-type VO2, displaying enhanced hydrogen adsorption behavior. Physical Chemistry Chemical Physics, 2012. 14(14): p. 4810-4816.
    23. Huang, G., et al., Graphene-Like MoS2/Graphene Composites: Cationic Surfactant-Assisted Hydrothermal Synthesis and Electrochemical Reversible Storage of Lithium. Small, 2013. 9(21): p. 3693-3703.
    24. Pimenta, M.A., et al., Comparative Study of Raman Spectroscopy in Graphene and MoS2-type Transition Metal Dichalcogenides. Accounts of Chemical Research, 2015. 48(1): p. 41-47.
    25. Ferrari, A.C., et al., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006. 97(18): p. 187401.
    26. Ferrari, A.C. and D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 2013. 8: p. 235.
    27. Zhang, L., et al., Electrochemical Reaction Mechanism of the MoS2 Electrode in a Lithium-Ion Cell Revealed by in Situ and Operando X-ray Absorption Spectroscopy. Nano Letters, 2018. 18(2): p. 1466-1475.
    28. Xiao, J., et al., Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries. Chemistry of Materials, 2010. 22(16): p. 4522-4524.
    29. Zheng, J., et al., Diffusion of Li+ ion on graphene: A DFT study. Applied Surface Science, 2011. 258(5): p. 1651-1655.
    30. Li, Y., et al., Enhanced Li Adsorption and Diffusion on MoS2 Zigzag Nanoribbons by Edge Effects: A Computational Study. The Journal of Physical Chemistry Letters, 2012. 3(16): p. 2221-2227.
    31. Shao, X., et al., Lithium intercalation in Graphene/MoS2 composites: first-principles insights. The Journal of Physical Chemistry C, 2015. 119(46): p. 25860-25867.
    32. Xie, X., et al., MoS2/Graphene Composite Anodes with Enhanced Performance for Sodium‐Ion Batteries: The Role of the Two‐Dimensional Heterointerface. Advanced Functional Materials, 2015. 25(9): p. 1393-1403.
    33. Malyi, O.I., et al., A computational study of Na behavior on graphene. Applied Surface Science, 2015. 333: p. 235-243.
    34. Rydberg, H., et al., Van der Waals density functional for layered structures. Physical review letters, 2003. 91(12): p. 126402.
    35. Ebnonnasir, A., et al., Tunable MoS2 bandgap in MoS2-graphene heterostructures. Applied Physics Letters, 2014. 105(3): p. 031603.
    36. Kufer, D. and G. Konstantatos, Highly Sensitive, Encapsulated MoS2 Photodetector with Gate Controllable Gain and Speed. Nano Letters, 2015. 15(11): p. 7307-7313.

    QR CODE