研究生: |
愛爾華多 Atayde, Eduardo Jr. Clarito |
---|---|
論文名稱: |
利用金屬有機框架觸媒之生物質轉化反應與其產物呋喃寡聚體應用於新型電致變色材料 MOF-Catalyzed Synthesis of Biomass-based Furan Oligomers and Their Application as New Electrochromic Materials |
指導教授: |
吳嘉文
Wu, Chia-Wen 倪其焜 Ni, Chi-Kung |
口試委員: |
何國川
Ho, Kuo-Chuan 陳林祈 Chen, Lin-Chi 康敦彥 Kang, Dun-Yen 葉禮賢 Yeh, Li-Hsien |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 276 |
中文關鍵詞: | 生物質 、呋喃寡聚物 、電致色變 、π-堆疊 、羥基烷基化-烷基化反應 、硫酸化MOF-808 |
外文關鍵詞: | Biomass, Furan Oligomer, Electrochromism, π-Stacks, Hydroxyalkylation-Alkylation Reactions, Sulfated MOF-808 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球日益增加的能源需求促使研究人員制定了不同的策略,以利用可再生資源生成能源並減少能耗。根據此目標,本論文將介紹生物質材料轉化的方法,轉化出多種生物燃料前驅物的呋喃寡聚物,並將這些呋喃寡聚物應用於電致變色技術,這項技術相當適合應用於窗戶中達到改變透光性之目的,在永續建築中是相當重要的應用。
本研究中呋喃寡聚物可以通過羥基烷基化/烷基化反應(HAA)的原位合成,且使用了首次介紹的酸性金屬有機框架材料之硫酸化MOF-808作為觸媒,以高產量和高選擇性生成多種呋喃寡聚物。結果顯示使用酸性MOF觸媒進行的HAA催化反應,可因為抑制2-甲基呋喃的自縮合反應,使主產物產率高達97%。該觸媒的高穩定性,使產率在重複性實驗中不會明顯的降低。除此之外硫酸化MOF-808還促使苯基電親試劑和呋喃衍生物的反應更容易進行,因此證明了硫酸化MOF-808的多功能性。
針對呋喃寡聚物進一步研究了其電致變色性能,將tris(5-methylfuran-2-yl)methane(TriM)寡聚物引入原型電致變色器件後,藉由調控施加電壓,元件的顏色會隨著電位調控在透明的黃色與紅色之間進行可逆的變色。基於呋喃寡聚物的特性與表徵,電致變色元件在吸收波長為507 nm時具有1940 cm²/C的優異著色效率,並且具有相當優異的重複使用性,可持續1000次的切換循環。實驗和計算結果證實,寡聚物的著色是由於寡聚物陽離子自由基的可逆π-堆疊形成。本研究展現了優異的觸媒並有效地從生物質中轉化出寡聚物,並以此寡聚物取代其他有機電致變色材料,為開發新型有機電致變色打下良好的基礎。
The world’s increasing energy demands has prompted researchers to formulate different strategies to generate energy from renewable sources and to also cut down energy usage. Aligned with these goals, this dissertation presents a means of generating different oligofuran-based biofuel precursors that can be obtained from biomass-based materials and introduces another application of these oligofurans in the field of electrochromism, which is fundamental in the development of smart windows for sustainable buildings.
Furan oligomers may be synthesized using a one-pot approach by hydroxyalkylation/alkylation reaction (HAA). In this study, we introduce the first application of an acidic metal-organic framework, Sulfated MOF-808 in the catalysis of HAA reactions to produce a variety of furan oligomers with high yield and selectivity. Our results revealed that the use of the acidic MOF for our representative HAA reaction can generate a quantitative yield of 97%, while at the same time inhibiting the self-condensation of 2-methylfuran. It was also revealed that the catalyst is highly stable and can be reused many times without any significant degradation in its efficiency. The versatility of the catalyst towards the HAA process was also proven by its ability to facilitate the reaction involving benzene-based electrophiles and furan derivative.
The generated furan oligomers were further investigated for their electrochromic properties. Upon incorporation of tris(5-methylfuran-2-yl)methane (TriM) oligomer into a prototype ECD, it was observed that it can undergo reversible transitions between a transmissive yellow state to red-colored state when subjected to different applied potentials. Additional characterizations have revealed that the furan-based ECD has a superior coloration efficiency of 1940 cm2/C at 507 nm and that it is stable enough to last 1000 switching cycles. It is also proposed that the coloration of the oligomer is due to the reversible π-stack formation of the oligomer radical cations as confirmed by both experimental and computational results. The ability to derive this oligomer from biomass and its simple synthesis process make it a formidable alternative to other existing organic electrochromic materials. In addition, this material may also serve as a base compound in the development of novel organic electrochromes.
[1] P. Kumar, M. Varkolu, S. Mailaram, A. Kunamalla, S.K. Maity, Biorefinery polyutilization systems: Production of green transportation fuels from biomass, Elsevier Inc., 2018. https://doi.org/10.1016/B978-0-12-813306-4.00012-4.
[2] J.Y. Kim, H.W. Lee, S.M. Lee, J. Jae, Y.K. Park, Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals, Bioresour. Technol. 279 (2019) 373–384. https://doi.org/10.1016/j.biortech.2019.01.055.
[3] M.N. Belgacem, A. Gandini, Monomers, Polymers and Composites from Renewable Resources, 2008. https://doi.org/10.1016/B978-0-08-045316-3.X0001-4.
[4] W. Wang, J. Yan, M. Sun, X. Li, Y. Li, L. An, C. Qian, X. Zhang, X. Shao, Y. Duan, G. Li, Recent Progress in the Conversion of Methylfuran into Value-Added Chemicals and Fuels, Molecules. 29 (2024) 2976. https://doi.org/10.3390/molecules29132976.
[5] A. Bohre, S. Dutta, B. Saha, M.M. Abu-Omar, Upgrading Furfurals to Drop-in Biofuels: An Overview, ACS Sustain. Chem. Eng. 3 (2015) 1263–1277. https://doi.org/10.1021/acssuschemeng.5b00271.
[6] P.R. Thombal, R.S. Thombal, S.S. Han, Comprehensive study on the catalytic methods for furyl alkane synthesis: A promising biodiesel precursor, Renew. Sustain. Energy Rev. 135 (2021) 110218. https://doi.org/10.1016/j.rser.2020.110218.
[7] C. Van Nguyen, D. Lewis, W.-H. Chen, H.-W. Huang, Z.A. ALOthman, Y. Yamauchi, K.C.W. Wu, Combined treatments for producing 5-hydroxymethylfurfural (HMF) from lignocellulosic biomass, Catal. Today. 278 (2016) 344–349. https://doi.org/10.1016/j.cattod.2016.03.022.
[8] B.M. Matsagar, C. Van Nguyen, M.S.A. Hossain, M.T. Islam, Y. Yamauchi, P.L. Dhepe, K.C.W. Wu, Glucose isomerization catalyzed by bone char and the selective production of 5-hydroxymethylfurfural in aqueous media, Sustain. Energy Fuels. 2 (2018) 2148–2153. https://doi.org/10.1039/C8SE00339D.
[9] S. Dutta, H.-M. Kao, K.C.-W. Wu, Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems, APL Mater. 2 (2014) 113314. https://doi.org/10.1063/1.4899119.
[10] A. Corma, O. De La Torre, M. Renz, N. Villandier, Production of high-quality diesel from biomass waste products, Angew. Chemie - Int. Ed. 50 (2011) 2375–2378. https://doi.org/10.1002/anie.201007508.
[11] A. Corma, O. Delatorre, M. Renz, High-quality diesel from hexose- and pentose-derived biomass platform molecules, ChemSusChem. 4 (2011) 1574–1577. https://doi.org/10.1002/cssc.201100296.
[12] G. Li, N. Li, Z. Wang, C. Li, A. Wang, X. Wang, Y. Cong, T. Zhang, Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose, ChemSusChem. 5 (2012) 1958–1966. https://doi.org/10.1002/cssc.201200228.
[13] Y.J. Luo, Y.H. Zhou, Y.B. Huang, A New Lewis Acidic Zr Catalyst for the Synthesis of Furanic Diesel Precursor from Biomass Derived Furfural and 2-Methylfuran, Catal. Letters. 149 (2019) 292–302. https://doi.org/10.1007/s10562-018-2599-6.
[14] R.Q. Raguindin, M.N. Gebresillase, S.J. Han, J.G. Seo, Hydroxyalkylation/alkylation of 2-methylfuran and furfural over niobic acid catalysts for the synthesis of high carbon transport fuel precursors, Sustain. Energy Fuels. 4 (2020) 3018–3028. https://doi.org/10.1039/d0se00267d.
[15] A. Ishigaki, T. Shono, The Cationic Oligomerization of 2-Methylfuran and the Characteristics of the Oligomers, Bull. Chem. Soc. Jpn. 47 (1974) 1467–1470. https://doi.org/10.1246/bcsj.47.1467.
[16] E. Ramírez, R. Soto, R. Bringué, M. Iborra, J. Tejero, Catalytic Hydroxyalkylation/Alkylation of 2-Methylfuran with Butanal to Form a Biodiesel Precursor Using Acidic Ion-Exchange Resins, Ind. Eng. Chem. Res. 59 (2020) 20676–20685. https://doi.org/10.1021/acs.iecr.0c04308.
[17] R. Kumar, D.K. Pathak, A. Chaudhary, Current status of some electrochromic materials and devices: A brief review, J. Phys. D. Appl. Phys. 54 (2021). https://doi.org/10.1088/1361-6463/ac10d6.
[18] R. Zheng, Y. Wang, J. Pan, H.A. Malik, H. Zhang, C. Jia, X. Weng, J. Xie, L. Deng, Toward Easy-to-Assemble, Large-Area Smart Windows: All-in-One Cross-Linked Electrochromic Material and Device, ACS Appl. Mater. Interfaces. 12 (2020) 27526–27536. https://doi.org/10.1021/acsami.0c02337.
[19] H. Kai, W. Suda, Y. Ogawa, K. Nagamine, M. Nishizawa, Intrinsically Stretchable Electrochromic Display by a Composite Film of Poly(3,4-ethylenedioxythiophene) and Polyurethane, ACS Appl. Mater. Interfaces. 9 (2017) 19513–19518. https://doi.org/10.1021/acsami.7b03124.
[20] A.M. Österholm, D.E. Shen, J.A. Kerszulis, R.H. Bulloch, M. Kuepfert, A.L. Dyer, J.R. Reynolds, Four shades of brown: Tuning of electrochromic polymer blends toward high-contrast eyewear, ACS Appl. Mater. Interfaces. 7 (2015) 1413–1421. https://doi.org/10.1021/am507063d.
[21] X. Li, K. Perera, J. He, A. Gumyusenge, J. Mei, Solution-processable electrochromic materials and devices: roadblocks and strategies towards large-scale applications, J. Mater. Chem. C. 7 (2019) 12761–12789. https://doi.org/10.1039/C9TC02861G.
[22] M. Jamdegni, A. Kaur, Review—Polymeric/Small Organic Molecules-Based Electrochromic Devices: How Far Toward Realization, J. Electrochem. Soc. 169 (2022) 030541. https://doi.org/10.1149/1945-7111/ac5c04.
[23] T.A. Welsh, E.R. Draper, Water soluble organic electrochromic materials, RSC Adv. 11 (2021) 5245–5264. https://doi.org/10.1039/d0ra10346b.
[24] J. Ding, C. Zheng, L. Wang, C. Lu, B. Zhang, Y. Chen, M. Li, G. Zhai, X. Zhuang, Viologen-inspired functional materials: synthetic strategies and applications, (2019). https://doi.org/10.1039/c9ta01724k.
[25] O. Gidron, Y. Diskin-Posner, M. Bendikov, α-Oligofurans, J. Am. Chem. Soc. 132 (2010) 2148–2150. https://doi.org/10.1021/ja9093346.
[26] O. Gidron, M. Bendikov, α-oligofurans: An emerging class of conjugated oligomers for organic electronics, Angew. Chemie - Int. Ed. 53 (2014) 2546–2555. https://doi.org/10.1002/anie.201308216.
[27] O. Gidron, A. Dadvand, Y. Sheynin, M. Bendikov, D.F. Perepichka, Towards “green” electronic materials. α-Oligofurans as semiconductors, Chem. Commun. 47 (2011) 1976–1978. https://doi.org/10.1039/c0cc04699j.
[28] H. Cao, P.A. Rupar, Recent Advances in Conjugated Furans, Chem. - A Eur. J. 23 (2017) 14670–14675. https://doi.org/10.1002/chem.201703355.
[29] B. Demirboǧa, A.M. Önal, Electrochemical polymerization of furan and 2-methylfuran, Synth. Met. 99 (1999) 237–242. https://doi.org/10.1016/s0379-6779(98)01509-4.
[30] Y. Lu, Y. Zheng, R. He, W. Li, Z. Zheng, Selective conversion of lignocellulosic biomass into furan compounds using bimetal-modified bio-based activated carbon: Analytical Py-GC×GC/MS, J. Energy Inst. 93 (2020) 2371–2380. https://doi.org/10.1016/j.joei.2020.07.010.
[31] Y. Te Liao, B.M. Matsagar, K.C.W. Wu, Metal-Organic Framework (MOF)-Derived Effective Solid Catalysts for Valorization of Lignocellulosic Biomass, ACS Sustain. Chem. Eng. 6 (2018) 13628–13643. https://doi.org/10.1021/acssuschemeng.8b03683.
[32] G. Marcotullio, W. De Jong, Furfural formation from D-xylose: The use of different halides in dilute aqueous acidic solutions allows for exceptionally high yields, Carbohydr. Res. 346 (2011) 1291–1293. https://doi.org/10.1016/j.carres.2011.04.036.
[33] S. Verma, R.B.N. Baig, M.N. Nadagouda, C. Len, R.S. Varma, Sustainable pathway to furanics from biomass: Via heterogeneous organo-catalysis, Green Chem. 19 (2017) 164–168. https://doi.org/10.1039/c6gc02551j.
[34] J. Ma, W. Li, S. Guan, Q. Liu, Q. Li, C. Zhu, T. Yang, A.T. Ogunbiyi, L. Ma, Efficient catalytic conversion of corn stalk and xylose into furfural over sulfonated graphene in γ-valerolactone, RSC Adv. 9 (2019) 10569–10577. https://doi.org/10.1039/c9ra01411j.
[35] C. García-Sancho, J.M. Rubio-Caballero, J.M. Mérida-Robles, R. Moreno-Tost, J. Santamaría-González, P. Maireles-Torres, Mesoporous Nb2O5 as solid acid catalyst for dehydration of d-xylose into furfural, Catal. Today. 234 (2014) 119–124. https://doi.org/10.1016/j.cattod.2014.02.012.
[36] M. Chatterjee, T. Ishizaka, H. Kawanami, Accelerated decarbonylation of 5-hydroxymethylfurfural in compressed carbon dioxide: A facile approach, Green Chem. 20 (2018) 2345–2355. https://doi.org/10.1039/c8gc00174j.
[37] J.G. Stevens, R.A. Bourne, M. V. Twigg, M. Poliakoff, Real-time product switching using a twin catalyst system for the hydrogenation of furfural in supercritical CO2, Angew. Chemie - Int. Ed. 49 (2010) 8856–8859. https://doi.org/10.1002/anie.201005092.
[38] Y.B. Huang, Z. Yang, M.Y. Chen, J.J. Dai, Q.X. Guo, Y. Fu, Heterogeneous palladium catalysts for decarbonylation of biomass-derived molecules under mild conditions, ChemSusChem. 6 (2013) 1348–1351. https://doi.org/10.1002/cssc.201300190.
[39] J. Zhang, B. Wang, E. Nikolla, J.W. Medlin, Directing Reaction Pathways through Controlled Reactant Binding at Pd–TiO2 Interfaces, Angew. Chemie - Int. Ed. 56 (2017) 6594–6598. https://doi.org/10.1002/anie.201703669.
[40] F. Dong, G. Ding, H. Zheng, X. Xiang, L. Chen, Y. Zhu, Y. Li, Highly dispersed Cu nanoparticles as an efficient catalyst for the synthesis of the biofuel 2-methylfuran, Catal. Sci. Technol. 6 (2016) 767–779. https://doi.org/10.1039/c5cy00857c.
[41] J.M. Asensio, A.B. Miguel, P.F. Fazzini, P.W.N.M. van Leeuwen, B. Chaudret, Hydrodeoxygenation Using Magnetic Induction: High-Temperature Heterogeneous Catalysis in Solution, Angew. Chemie - Int. Ed. 58 (2019) 11306–11310. https://doi.org/10.1002/anie.201904366.
[42] X. Yang, X. Xiang, H. Chen, H. Zheng, Y.W. Li, Y. Zhu, Efficient Synthesis of Furfuryl Alcohol and 2-Methylfuran from Furfural over Mineral-Derived Cu/ZnO Catalysts, ChemCatChem. 9 (2017) 3023–3030. https://doi.org/10.1002/cctc.201700279.
[43] Y.J. Pagán-Torres, T. Wang, J.M.R. Gallo, B.H. Shanks, J.A. Dumesic, Production of 5-hydroxymethylfurfural from glucose using a combination of lewis and brønsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent, ACS Catal. 2 (2012) 930–934. https://doi.org/10.1021/cs300192z.
[44] F. Liang, D. Chen, H. Liu, W. Liu, M. Xian, D. Feng, One-Pot Synthesis of 5-Hydroxymethylfurfural from Glucose by Brønsted Acid-Free Bifunctional Porous Coordination Polymers in Water, ACS Omega. 4 (2019) 9316–9323. https://doi.org/10.1021/acsomega.9b00882.
[45] K.L. Chang, Q.T. Huynh, C.T. Zhong, W.R. Chen, H.Y. Wang, P. Phitsuwan, Y.C. Lin, G.C.C. Yang, Production of 5-hydroxymethylfurfural from glucose by recyclable heteropolyacid catalyst in ionic liquid, Environ. Technol. Innov. 28 (2022) 102844. https://doi.org/10.1016/j.eti.2022.102844.
[46] K. Ghosh, R.A. Molla, M.A. Iqubal, S.S. Islam, S.M. Islam, Ruthenium nanoparticles supported on N-containing mesoporous polymer catalyzed aerobic oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF), Appl. Catal. A Gen. 520 (2016) 44–52. https://doi.org/10.1016/j.apcata.2016.03.035.
[47] L. Yu, H. Chen, Z. Wen, M. Jin, Z. Ma, X. Ma, Y. Sang, M. Chen, Y. Li, Highly selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over an α-MnO2 catalyst, Catal. Today. 367 (2021) 9–15. https://doi.org/10.1016/j.cattod.2020.10.037.
[48] B.C. Li, J. Lee, E. Kwon, B.X. Thanh, G. Lisak, C.H. Lin, K.Y.A. Lin, Selective conversion of hydroxymethylfurfural to diformylfuran using copper hydroxide nitrate with various nano-structures: A comparative study, Sustain. Energy Fuels. 6 (2022) 276–288. https://doi.org/10.1039/d1se01443a.
[49] A.E. Elmetwally, M.S. Sayed, Y. Zhou, J.B. Domena, J.J. Shim, R.M. Leblanc, M.R. Knecht, L.G. Bachas, Photocatalytic Partial Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran Using Exfoliated g-C3N4/Pd Nanoarchitectures, J. Phys. Chem. C. 126 (2022) 15671–15684. https://doi.org/10.1021/acs.jpcc.2c04186.
[50] A. Tuan Hoang, V. Viet Pham, 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines, Renew. Sustain. Energy Rev. 148 (2021) 111265. https://doi.org/10.1016/j.rser.2021.111265.
[51] S. Mailaram, P. Kumar, A. Kunamalla, P. Saklecha, S.K. Maity, Biomass, biorefinery, and biofuels, INC, 2021. https://doi.org/10.1016/b978-0-12-822989-7.00003-2.
[52] F. Deng, A.S. Amarasekara, Catalytic upgrading of biomass derived furans, Ind. Crops Prod. 159 (2021). https://doi.org/10.1016/j.indcrop.2020.113055.
[53] A. Husain, S.A. Khan, F. Iram, M.A. Iqbal, M. Asif, Insights into the chemistry and therapeutic potential of furanones: A versatile pharmacophore, Eur. J. Med. Chem. 171 (2019) 66–92. https://doi.org/10.1016/j.ejmech.2019.03.021.
[54] F. Chang, S. Dutta, J.J. Becnel, A.S. Estep, M. Mascal, Synthesis of the insecticide prothrin and its analogues from biomass-derived 5-(chloromethyl)furfural, J. Agric. Food Chem. 62 (2014) 476–480. https://doi.org/10.1021/jf4045843.
[55] A. Gandini, T. M. Lacerda, Furan Polymers: State of the Art and Perspectives, Macromol. Mater. Eng. 307 (2022) 1–17. https://doi.org/10.1002/mame.202100902.
[56] A. Al Ghatta, P.Y.S. Nakasu, J.P. Hallett, Implementation of furan-based building blocks in commodity chemical production: An opinion on scientific progress and economic viability, Curr. Opin. Green Sustain. Chem. 41 (2023) 100792. https://doi.org/10.1016/j.cogsc.2023.100792.
[57] F.B. Ahmad, M.A. Kalam, Z. Zhang, H.H. Masjuki, Sustainable production of furan-based oxygenated fuel additives from pentose-rich biomass residues, Energy Convers. Manag. X. 14 (2022) 100222. https://doi.org/10.1016/j.ecmx.2022.100222.
[58] B. Zheng, L. Huo, Recent Advances of Furan and Its Derivatives Based Semiconductor Materials for Organic Photovoltaics, Small Methods. 5 (2021) 1–45. https://doi.org/10.1002/smtd.202100493.
[59] B. Li, H. Huang, Furan semiconductors and their application in organic field-effect transistors, Mater. Today Nano. 21 (2023). https://doi.org/10.1016/j.mtnano.2022.100284.
[60] I. Ogino, Y. Suzuki, S.R. Mukai, Tuning the Pore Structure and Surface Properties of Carbon-Based Acid Catalysts for Liquid-Phase Reactions, ACS Catal. 5 (2015) 4951–4958. https://doi.org/10.1021/acscatal.5b01022.
[61] M.N. Gebresillase, R. Shavi, J.G. Seo, A comprehensive investigation of the condensation of furanic platform molecules to C14-C15 fuel precursors over sulfonic acid functionalized silica supports, Green Chem. 20 (2018) 5133–5146. https://doi.org/10.1039/c8gc01953c.
[62] S.H. Shinde, C. V. Rode, A two-phase system for the clean and high yield synthesis of furylmethane derivatives over -SO3H functionalized ionic liquids, Green Chem. 19 (2017) 4804–4810. https://doi.org/10.1039/c7gc01654a.
[63] S. Liu, S. Dutta, W. Zheng, N.S. Gould, Z. Cheng, B. Xu, B. Saha, D.G. Vlachos, Catalytic Hydrodeoxygenation of High Carbon Furylmethanes to Renewable Jet-fuel Ranged Alkanes over a Rhenium-Modified Iridium Catalyst, ChemSusChem. 10 (2017) 3225–3234. https://doi.org/10.1002/cssc.201700863.
[64] S. Dutta, B. Saha, Hydrodeoxygenation of Furylmethane Oxygenates to Jet and Diesel Range Fuels: Probing the Reaction Network with Supported Palladium Catalyst and Hafnium Triflate Promoter, ACS Catal. 7 (2017) 5491–5499. https://doi.org/10.1021/acscatal.7b00986.
[65] S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H.C. Zhou, Stable Metal–Organic Frameworks: Design, Synthesis, and Applications, Adv. Mater. 30 (2018). https://doi.org/10.1002/adma.201704303.
[66] W. Gong, Y. Liu, H. Li, Y. Cui, Metal-organic frameworks as solid Brønsted acid catalysts for advanced organic transformations, Coord. Chem. Rev. 420 (2020) 213400. https://doi.org/10.1016/j.ccr.2020.213400.
[67] E. Aunan, C.W. Affolter, U. Olsbye, K.P. Lillerud, Modulation of the Thermochemical Stability and Adsorptive Properties of MOF-808 by the Selection of Non-structural Ligands, Chem. Mater. 33 (2021) 1471–1476. https://doi.org/10.1021/acs.chemmater.0c04823.
[68] G. Ye, L. Wan, Q. Zhang, H. Liu, J. Zhou, L. Wu, X. Zeng, H. Wang, X. Chen, jin wang, Boosting Catalytic Performance of Mof-808(Zr) by Direct Generation of Rich Defective Zr-Nodes Via a Formic Acid-Free Approach, SSRN Electron. J. 808 (2022). https://doi.org/10.2139/ssrn.4289676.
[69] X. Li, L. Huang, A. Kochubei, J. Huang, W. Shen, H. Xu, Q. Li, Evolution of a Metal-Organic Framework into a Brønsted Acid Catalyst for Glycerol Dehydration to Acrolein, ChemSusChem. 13 (2020) 5073–5079. https://doi.org/10.1002/cssc.202001377.
[70] J. Jiang, F. Gándara, Y. Zhang, K. Na, O.M. Yaghi, W.G. Klemperer, Superacidity in Sulfated Metal-Organic Framework-808 Section S1 Syntheses of Materials Methods :, J. Am. Chem. Soc. 136 (2014) S1-33.
[71] C.A. Trickett, T.M. Osborn Popp, J. Su, C. Yan, J. Weisberg, A. Huq, P. Urban, J. Jiang, M.J. Kalmutzki, Q. Liu, J. Baek, M.P. Head-Gordon, G.A. Somorjai, J.A. Reimer, O.M. Yaghi, Identification of the strong Brønsted acid site in a metal–organic framework solid acid catalyst, Nat. Chem. 11 (2019) 170–176. https://doi.org/10.1038/s41557-018-0171-z.
[72] Y.H. Vo, T. V. Le, H.D. Nguyen, T.A. To, H.Q. Ha, A.T. Nguyen, A.N.Q. Phan, N.T.S. Phan, Synthesis of quinazolinones and benzazoles utilizing recyclable sulfated metal-organic framework-808 catalyst in glycerol as green solvent, J. Ind. Eng. Chem. 64 (2018) 107–115. https://doi.org/10.1016/j.jiec.2018.03.006.
[73] P. Liu, E. Redekop, X. Gao, W.C. Liu, U. Olsbye, G.A. Somorjai, Oligomerization of Light Olefins Catalyzed by Brønsted-Acidic Metal-Organic Framework-808, J. Am. Chem. Soc. 141 (2019) 11557–11564. https://doi.org/10.1021/jacs.9b03867.
[74] H. Liu, Z. Zhang, J. Tang, Z. Fei, Q. Liu, X. Chen, M. Cui, X. Qiao, Quest for pore size effect on the catalytic property of defect-engineered MOF-808-SO4 in the addition reaction of isobutylene with ethylene glycol, J. Solid State Chem. 269 (2019) 9–15. https://doi.org/10.1016/j.jssc.2018.07.030.
[75] M.N. Timofeeva, V.N. Panchenko, I.A. Lukoyanov, S.H. Jhung, Zirconium-containing metal organic frameworks as solid acid catalysts for the N-formylation of aniline with formic acid, React. Kinet. Mech. Catal. 133 (2021) 355–369. https://doi.org/10.1007/s11144-021-01982-1.
[76] H.C. Moon, C.H. Kim, T.P. Lodge, C.D. Frisbie, Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels, ACS Appl. Mater. Interfaces. 8 (2016) 6252–6260. https://doi.org/10.1021/acsami.6b01307.
[77] G. Yang, Y.-M. Zhang, Y. Cai, B. Yang, C. Gu, S.X.-A. Zhang, Advances in nanomaterials for electrochromic devices †, Chem. Soc. Rev. 49 (2020) 8687. https://doi.org/10.1039/d0cs00317d.
[78] V. Rai, R.S. Singh, D.J. Blackwood, D. Zhili, A Review on Recent Advances in Electrochromic Devices: A Material Approach, Adv. Eng. Mater. 22 (2020) 1–23. https://doi.org/10.1002/adem.202000082.
[79] C. Gu, A.B. Jia, Y.M. Zhang, S.X.A. Zhang, Emerging Electrochromic Materials and Devices for Future Displays, Chem. Rev. 122 (2022) 14679–14721. https://doi.org/10.1021/acs.chemrev.1c01055.
[80] J.W. Xu, M.H. Chua, K.W. Shah, Electrochromic Smart Materials, Royal Society of Chemistry, Cambridge, 2019. https://doi.org/10.1039/9781788016667.
[81] J. Ding, C. Zheng, L. Wang, C. Lu, B. Zhang, Y. Chen, M. Li, G. Zhai, X. Zhuang, Viologen-inspired functional materials: Synthetic strategies and applications, J. Mater. Chem. A. 7 (2019) 23337–23360. https://doi.org/10.1039/c9ta01724k.
[82] R.J. Mortimer, Electrochromic materials, Annu. Rev. Mater. Res. 41 (2011) 241–268. https://doi.org/10.1146/annurev-matsci-062910-100344.
[83] S. Heo, C.J. Dahlman, C.M. Staller, T. Jiang, A. Dolocan, B.A. Korgel, D.J. Milliron, Enhanced Coloration Efficiency of Electrochromic Tungsten Oxide Nanorods by Site Selective Occupation of Sodium Ions, Nano Lett. 20 (2020) 2072–2079. https://doi.org/10.1021/acs.nanolett.0c00052.
[84] A. Llordés, Y. Wang, A. Fernandez-Martinez, P. Xiao, T. Lee, A. Poulain, O. Zandi, C.A. Saez Cabezas, G. Henkelman, D.J. Milliron, Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing, Nat. Mater. 15 (2016) 1267–1273. https://doi.org/10.1038/nmat4734.
[85] H.J. Yen, C.L. Tsai, S.H. Chen, G.S. Liou, Electrochromism and Nonvolatile Memory Device Derived from Triphenylamine-Based Polyimides with Pendant Viologen Units, Macromol. Rapid Commun. 38 (2017) 1–7. https://doi.org/10.1002/marc.201600715.
[86] C. Reus, M. Stolar, J. Vanderkley, J. Nebauer, T. Baumgartner, A Convenient N-Arylation Route for Electron-Deficient Pyridines: The Case of π-Extended Electrochromic Phosphaviologens, J. Am. Chem. Soc. 137 (2015) 11710–11717. https://doi.org/10.1021/jacs.5b06413.
[87] C.J. Barile, D.J. Slotcavage, M.D. McGehee, Polymer-Nanoparticle Electrochromic Materials that Selectively Modulate Visible and Near-Infrared Light, Chem. Mater. 28 (2016) 1439–1445. https://doi.org/10.1021/acs.chemmater.5b04811.
[88] Q. Zhang, C.Y. Tsai, L.J. Li, D.J. Liaw, Colorless-to-colorful switching electrochromic polyimides with very high contrast ratio, Nat. Commun. 10 (2019) 2–9. https://doi.org/10.1038/s41467-019-09054-8.
[89] T. Tibaoui, S. Ayachi, M. Chemek, K. Alimi, New bridged oligofuran for optoelectronic applications, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 142 (2015) 25–33. https://doi.org/10.1016/j.saa.2015.01.073.
[90] Z. Wei, Y. Chen, J. Wang, T. Yang, Z. Zhao, S. Zhu, De Novo Synthesis of α‐Oligo(arylfuran)s and Its Application in OLED as Hole‐Transporting Material, Chem. – A Eur. J. 29 (2023). https://doi.org/10.1002/chem.202203444.
[91] Y. Chen, P. Shen, T. Cao, H. Chen, Z. Zhao, S. Zhu, Bottom-up modular synthesis of well-defined oligo(arylfuran)s, Nat. Commun. 12 (2021) 1–13. https://doi.org/10.1038/s41467-021-26387-5.
[92] S. Kaur, N.J. Findlay, A.L. Kanibolotsky, S.E.T. Elmasly, P.J. Skabara, R. Berridge, C. Wilson, S.J. Coles, Electrochromic properties of a poly(dithienylfuran) derivative featuring a redox-active dithiin unit, Polym. Chem. 3 (2012) 2277–2286. https://doi.org/10.1039/c2py20277h.
[93] Y. Zhang, L. Kong, H. Du, J. Zhao, Y. Xie, Three novel donor-acceptor type electrochromic polymers containing 2,3-bis(5-methylfuran-2-yl)thieno[3,4-b]pyrazine acceptor and different thiophene donors: Low-band-gap, neutral green-colored, fast-switching materials, J. Electroanal. Chem. 830–831 (2018) 7–19. https://doi.org/10.1016/j.jelechem.2018.10.020.
[94] Z. Xu, M. Wang, J. Zhao, C. Cui, W. Fan, J. Liu, Donor–acceptor type neutral green polymers containing 2,3-di(5-methylfuran-2-yl) quinoxaline acceptor and different thiophene donors, Electrochim. Acta. 125 (2014) 241–249. https://doi.org/10.1016/j.electacta.2013.12.097.
[95] S. Zhen, J. Xu, B. Lu, S. Zhang, L. Zhao, J. Li, Tuning the optoelectronic properties of polyfuran by design of furan-EDOT monomers and free-standing films with enhanced redox stability and electrochromic performances, Electrochim. Acta. 146 (2014) 666–678. https://doi.org/10.1016/j.electacta.2014.09.034.
[96] D. Sheberla, S. Patra, Y.H. Wijsboom, S. Sharma, Y. Sheynin, A.E. Haj-Yahia, A.H. Barak, O. Gidron, M. Bendikov, Conducting polyfurans by electropolymerization of oligofurans, Chem. Sci. 6 (2015) 360–371. https://doi.org/10.1039/c4sc02664k.
[97] W. Yao, P. Liu, C. Liu, J. Xu, K. Lin, H. Kang, M. Li, X. Lan, F. Jiang, Flexible conjugated polyfurans for bifunctional electrochromic energy storage application, Chem. Eng. J. 428 (2022) 131125. https://doi.org/10.1016/j.cej.2021.131125.
[98] J.K. Politis, J.C. Nemes, M.D. Curtis, Synthesis and characterization of regiorandom and regioregular poly(3-octylfuran), J. Am. Chem. Soc. 123 (2001) 2537–2547. https://doi.org/10.1021/ja003588i.
[99] S. Tirkeş, A.M. Önal, Electrosynthesis of polyfuran in acetonitrile–boron trifluoride–ethyl ether mixture and its device application, J. Appl. Polym. Sci. 103 (2007) 871–876. https://doi.org/10.1002/app.25220.
[100] S. Zhen, B. Lu, J. Xu, S. Zhang, Y. Li, Poly(mono-, bi- or trifuran): effect of oligomer chain length on the electropolymerization performances and polymer properties, RSC Adv. 4 (2014) 14001–14012. https://doi.org/10.1039/C4RA00437J.
[101] K. Madasamy, D. Velayutham, V. Suryanarayanan, M. Kathiresan, K.C. Ho, Viologen-based electrochromic materials and devices, J. Mater. Chem. C. 7 (2019) 4622–4637. https://doi.org/10.1039/c9tc00416e.
[102] C.B. Nielsen, A. Angerhofer, K.A. Abboud, J.R. Reynolds, Discrete Photopatternable π-Conjugated Oligomers for Electrochromic Devices, J. Am. Chem. Soc. 130 (2008) 9734–9746. https://doi.org/10.1021/ja7112273.
[103] S. Tirkeş, A.M. Önal, Electrosynthesis of polyfuran in acetonitrile–boron trifluoride–ethyl ether mixture and its device application, J. Appl. Polym. Sci. 103 (2007) 871–876. https://doi.org/10.1002/app.25220.
[104] W. Yao, P. Liu, C. Liu, J. Xu, K. Lin, H. Kang, M. Li, X. Lan, F. Jiang, Flexible conjugated polyfurans for bifunctional electrochromic energy storage application, Chem. Eng. J. 428 (2022) 131125. https://doi.org/10.1016/j.cej.2021.131125.
[105] A.R. Mankar, A. Pandey, A. Modak, K.K. Pant, Pretreatment of lignocellulosic biomass: A review on recent advances, Bioresour. Technol. 334 (2021) 125235. https://doi.org/10.1016/j.biortech.2021.125235.
[106] D.H. Liu, H.L. He, J.J. Wang, S.Y. Zhou, T. Zeng, X.Y. Gao, Y. Xiao, X. Yi, A. Zheng, Y.B. Zhang, Z. Li, Acidic metal-organic framework empowered precise hydrodeoxygenation of bio-based furan compounds and cyclic ethers for sustainable fuels, Green Chem. 23 (2021) 9974–9981. https://doi.org/10.1039/d1gc03055h.
[107] S. Liu, W. Zheng, J. Fu, K. Alexopoulos, B. Saha, D.G. Vlachos, Molybdenum Oxide-Modified Iridium Catalysts for Selective Production of Renewable Oils for Jet and Diesel Fuels and Lubricants, ACS Catal. 9 (2019) 7679–7689. https://doi.org/10.1021/acscatal.9b02693.
[108] G. Li, N. Li, J. Yang, L. Li, A. Wang, X. Wang, Y. Cong, T. Zhang, Synthesis of renewable diesel range alkanes by hydrodeoxygenation of furans over Ni/Hβ under mild conditions, Green Chem. 16 (2014) 594–599. https://doi.org/10.1039/c3gc41356j.
[109] S. Dutta, A. Bohre, W. Zheng, G.R. Jenness, M. Núñez, B. Saha, D.G. Vlachos, Solventless C-C Coupling of Low Carbon Furanics to High Carbon Fuel Precursors Using an Improved Graphene Oxide Carbocatalyst, ACS Catal. 7 (2017) 3905–3915. https://doi.org/10.1021/acscatal.6b03113.
[110] Q. Xia, Y. Xia, J. Xi, X. Liu, Y. Zhang, Y. Guo, Y. Wang, Selective One-Pot Production of High-Grade Diesel-Range Alkanes from Furfural and 2-Methylfuran over Pd/NbOPO4, ChemSusChem. 10 (2017) 747–753. https://doi.org/10.1002/cssc.201601522.
[111] T. Wang, K. Li, Q. Liu, Q. Zhang, S. Qiu, J. Long, L. Chen, L. Ma, Q. Zhang, Aviation fuel synthesis by catalytic conversion of biomass hydrolysate in aqueous phase, Appl. Energy. 136 (2014) 775–780. https://doi.org/10.1016/j.apenergy.2014.06.035.
[112] Q. Wang, D. Astruc, State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis, Chem. Rev. 120 (2020) 1438–1511. https://doi.org/10.1021/acs.chemrev.9b00223.
[113] J. Jiang, O.M. Yaghi, Brønsted Acidity in Metal-Organic Frameworks, Chem. Rev. 115 (2015) 6966–6997. https://doi.org/10.1021/acs.chemrev.5b00221.
[114] J. Jiang, F. Gándara, Y.B. Zhang, K. Na, O.M. Yaghi, W.G. Klemperer, Superacidity in sulfated metal-organic framework-808, J. Am. Chem. Soc. 136 (2014) 12844–12847. https://doi.org/10.1021/ja507119n.
[115] B.M. Matsagar, P.L. Dhepe, Brönsted acidic ionic liquid-catalyzed conversion of hemicellulose into sugars, Catal. Sci. Technol. 5 (2015) 531–539. https://doi.org/10.1039/c4cy01047g.
[116] S. Mondal, B.C. Patra, A. Bhaumik, One-Pot Synthesis of Polyhydroquinoline Derivatives through Organic-Solid-Acid-Catalyzed Hantzsch Condensation Reaction, ChemCatChem. 9 (2017) 1469–1475. https://doi.org/10.1002/cctc.201601409.
[117] S.K. Das, S. Chatterjee, S. Mondal, A. Bhaumik, A new triazine-thiophene based porous organic polymer as efficient catalyst for the synthesis of chromenes via multicomponent coupling and catalyst support for facile synthesis of HMF from carbohydrates, Mol. Catal. 475 (2019) 110483. https://doi.org/10.1016/j.mcat.2019.110483.
[118] Z. Ziyang, K. Hidajat, A.K. Ray, Determination of adsorption and kinetic parameters for methyl tert-butyl ether synthesis from tert-butyl alcohol and methanol, J. Catal. 200 (2001) 209–221. https://doi.org/10.1006/jcat.2001.3180.
[119] S.V. Atghia, S.S. Beigbaghlou, Nanocrystalline titania-based sulfonic acid (TiO2-Pr-SO3H) as a new, highly efficient, and recyclable solid acid catalyst for preparation of quinoxaline derivatives, J. Nanostructure Chem. 3 (2013) 42–49. https://doi.org/10.1186/2193-8865-3-38.
[120] J.M. Guarinos, F.G. Cirujano, A. Rapeyko, F.X. Llabrés i Xamena, Conversion of levulinic acid to γ-valerolactone over Zr-containing metal-organic frameworks: Evidencing the role of Lewis and Brønsted acid sites, Mol. Catal. 515 (2021). https://doi.org/10.1016/j.mcat.2021.111925.
[121] H. Furukawa, F. Gándara, Y.B. Zhang, J. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water adsorption in porous metal-organic frameworks and related materials, J. Am. Chem. Soc. 136 (2014) 4369–4381. https://doi.org/10.1021/ja500330a.
[122] I. Yati, M. Yeom, J.W. Choi, H. Choo, D.J. Suh, J.M. Ha, Water-promoted selective heterogeneous catalytic trimerization of xylose-derived 2-methylfuran to diesel precursors, Appl. Catal. A Gen. 495 (2015) 200–205. https://doi.org/10.1016/j.apcata.2015.02.002.
[123] T. Chhabra, P. Dwivedi, V. Krishnan, Acid functionalized hydrochar as heterogeneous catalysts for solventless synthesis of biofuel precursors, Green Chem. 24 (2022) 898–910. https://doi.org/10.1039/d1gc03330a.
[124] M.A. Tabatabai, A Rapid Method for Determination of Sulfate in Water Samples, Environ. Lett. 7 (1974) 237–243. https://doi.org/10.1080/00139307409437403.
[125] D. Ürge-Vorsatz, L.F. Cabeza, S. Serrano, C. Barreneche, K. Petrichenko, Heating and cooling energy trends and drivers in buildings, Renew. Sustain. Energy Rev. 41 (2015) 85–98. https://doi.org/10.1016/j.rser.2014.08.039.
[126] T. Montagnon, D. Kalaitzakis, M. Triantafyllakis, M. Stratakis, G. Vassilikogiannakis, Furans and singlet oxygen – why there is more to come from this powerful partnership, Chem. Commun. 50 (2014) 15480–15498. https://doi.org/10.1039/C4CC02083A.
[127] O. Gidron, A. Dadvand, E. Wei-Hsin Sun, I. Chung, L.J.W. Shimon, M. Bendikov, D.F. Perepichka, Oligofuran-containing molecules for organic electronics, J. Mater. Chem. C. 1 (2013) 4358–4367. https://doi.org/10.1039/c3tc00079f.
[128] S. Dutta, H.M. Kao, K.C.W. Wu, Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems, APL Mater. 2 (2014). https://doi.org/10.1063/1.4899119.
[129] N. Mardirossian, M. Head-Gordon, ωb97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy, Phys. Chem. Chem. Phys. 16 (2014) 9904–9924. https://doi.org/10.1039/c3cp54374a.
[130] Y. Yao, Y. Kanai, Free Energy Profile of NaCl in Water: First-Principles Molecular Dynamics with SCAN and ωB97X-V Exchange−Correlation Functionals, J. Chem. Theory Comput. 14 (2018) 54. https://doi.org/10.1021/acs.jctc.7b00846.
[131] S. Pande, X. Gong, L.-S. Wang, X.C. Zeng, Au 60 – : The Smallest Gold Cluster with the High-Symmetry Icosahedral Core Au 13, J. Phys. Chem. Lett. 10 (2019) 1820–1827. https://doi.org/10.1021/acs.jpclett.9b00446.
[132] A. V. Domnin, A. V. Bandura, R.A. Evarestov, First‐Principles Calculations of Phonons and Thermodynamic Properties of Zr(Hf)S 2 ‐Based Nanotubes, J. Comput. Chem. 41 (2020) 759–768. https://doi.org/10.1002/jcc.26124.
[133] C.C.R. Sutton, G. V. Franks, G. da Silva, First Principles p K a Calculations on Carboxylic Acids Using the SMD Solvation Model: Effect of Thermodynamic Cycle, Model Chemistry, and Explicit Solvent Molecules, J. Phys. Chem. B. 116 (2012) 11999–12006. https://doi.org/10.1021/jp305876r.
[134] E. Epifanovsky, A.T.B. Gilbert, X. Feng, J. Lee, Y. Mao, N. Mardirossian, P. Pokhilko, A.F. White, M.P. Coons, A.L. Dempwolff, Z. Gan, D. Hait, P.R. Horn, L.D. Jacobson, I. Kaliman, J. Kussmann, A.W. Lange, K.U. Lao, D.S. Levine, J. Liu, S.C. McKenzie, A.F. Morrison, K.D. Nanda, F. Plasser, D.R. Rehn, M.L. Vidal, Z.-Q. You, Y. Zhu, B. Alam, B.J. Albrecht, A. Aldossary, E. Alguire, J.H. Andersen, V. Athavale, D. Barton, K. Begam, A. Behn, N. Bellonzi, Y.A. Bernard, E.J. Berquist, H.G.A. Burton, A. Carreras, K. Carter-Fenk, R. Chakraborty, A.D. Chien, K.D. Closser, V. Cofer-Shabica, S. Dasgupta, M. de Wergifosse, J. Deng, M. Diedenhofen, H. Do, S. Ehlert, P.-T. Fang, S. Fatehi, Q. Feng, T. Friedhoff, J. Gayvert, Q. Ge, G. Gidofalvi, M. Goldey, J. Gomes, C.E. González-Espinoza, S. Gulania, A.O. Gunina, M.W.D. Hanson-Heine, P.H.P. Harbach, A. Hauser, M.F. Herbst, M. Hernández Vera, M. Hodecker, Z.C. Holden, S. Houck, X. Huang, K. Hui, B.C. Huynh, M. Ivanov, Á. Jász, H. Ji, H. Jiang, B. Kaduk, S. Kähler, K. Khistyaev, J. Kim, G. Kis, P. Klunzinger, Z. Koczor-Benda, J.H. Koh, D. Kosenkov, L. Koulias, T. Kowalczyk, C.M. Krauter, K. Kue, A. Kunitsa, T. Kus, I. Ladjánszki, A. Landau, K. V. Lawler, D. Lefrancois, S. Lehtola, R.R. Li, Y.-P. Li, J. Liang, M. Liebenthal, H.-H. Lin, Y.-S. Lin, F. Liu, K.-Y. Liu, M. Loipersberger, A. Luenser, A. Manjanath, P. Manohar, E. Mansoor, S.F. Manzer, S.-P. Mao, A. V. Marenich, T. Markovich, S. Mason, S.A. Maurer, P.F. McLaughlin, M.F.S.J. Menger, J.-M. Mewes, S.A. Mewes, P. Morgante, J.W. Mullinax, K.J. Oosterbaan, G. Paran, A.C. Paul, S.K. Paul, F. Pavošević, Z. Pei, S. Prager, E.I. Proynov, Á. Rák, E. Ramos-Cordoba, B. Rana, A.E. Rask, A. Rettig, R.M. Richard, F. Rob, E. Rossomme, T. Scheele, M. Scheurer, M. Schneider, N. Sergueev, S.M. Sharada, W. Skomorowski, D.W. Small, C.J. Stein, Y.-C. Su, E.J. Sundstrom, Z. Tao, J. Thirman, G.J. Tornai, T. Tsuchimochi, N.M. Tubman, S.P. Veccham, O. Vydrov, J. Wenzel, J. Witte, A. Yamada, K. Yao, S. Yeganeh, S.R. Yost, A. Zech, I.Y. Zhang, X. Zhang, Y. Zhang, D. Zuev, A. Aspuru-Guzik, A.T. Bell, N.A. Besley, K.B. Bravaya, B.R. Brooks, D. Casanova, J.-D. Chai, S. Coriani, C.J. Cramer, G. Cserey, A.E. DePrince, R.A. DiStasio, A. Dreuw, B.D. Dunietz, T.R. Furlani, W.A. Goddard, S. Hammes-Schiffer, T. Head-Gordon, W.J. Hehre, C.-P. Hsu, T.-C. Jagau, Y. Jung, A. Klamt, J. Kong, D.S. Lambrecht, W. Liang, N.J. Mayhall, C.W. McCurdy, J.B. Neaton, C. Ochsenfeld, J.A. Parkhill, R. Peverati, V.A. Rassolov, Y. Shao, L. V. Slipchenko, T. Stauch, R.P. Steele, J.E. Subotnik, A.J.W. Thom, A. Tkatchenko, D.G. Truhlar, T. Van Voorhis, T.A. Wesolowski, K.B. Whaley, H.L. Woodcock, P.M. Zimmerman, S. Faraji, P.M.W. Gill, M. Head-Gordon, J.M. Herbert, A.I. Krylov, Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package, J. Chem. Phys. 155 (2021) 084801. https://doi.org/10.1063/5.0055522.
[135] X.H. Jin, D. Sheberla, L.J.W. Shimon, M. Bendikov, Highly coplanar very long oligo(alkylfuran)s: A conjugated system with specific head-to-head defect, J. Am. Chem. Soc. 136 (2014) 2592–2601. https://doi.org/10.1021/ja411842g.
[136] A.J. Varni, A. Fortney, M.A. Baker, J.C. Worch, Y. Qiu, D. Yaron, S. Bernhard, K.J.T. Noonan, T. Kowalewski, Photostable Helical Polyfurans, J. Am. Chem. Soc. 141 (2019) 8858–8867. https://doi.org/10.1021/jacs.9b01567.
[137] I. Majerz, Weak interactions in furan dimers, J. Comput. Aided. Mol. Des. 32 (2018) 1247–1258. https://doi.org/10.1007/s10822-018-0163-5.
[138] S. V. Mulay, O. Dishi, Y. Fang, M.R. Niazi, L.J.W. Shimon, D.F. Perepichka, O. Gidron, A macrocyclic oligofuran: Synthesis, solid state structure and electronic properties, Chem. Sci. 10 (2019) 8527–8532. https://doi.org/10.1039/c9sc03247a.
[139] N. Pal, N. Saxena, A. Mandal, Equilibrium and dynamic adsorption of gemini surfactants with different spacer lengths at oil/aqueous interfaces, Colloids Surfaces A Physicochem. Eng. Asp. 533 (2017) 20–32. https://doi.org/10.1016/j.colsurfa.2017.08.020.
[140] O.A. González-Meza, E.R. Larios-Durán, A. Gutiérrez-Becerra, N. Casillas, J.I. Escalante, M. Bárcena-Soto, Development of a Randles-Ševčík-like equation to predict the peak current of cyclic voltammetry for solid metal hexacyanoferrates, J. Solid State Electrochem. 23 (2019) 3123–3133. https://doi.org/10.1007/s10008-019-04410-6.
[141] M.G. Hill, K.R. Mann, L.L. Miller, J.F. Penneau, Oligothiophene cation radical dimers. An alternative to bipolarons in oxidized polythiophene, J. Am. Chem. Soc. 114 (1992) 2728–2730. https://doi.org/10.1021/ja00033a063.
[142] L.-Y. Hsiao, F.-Y. Kuo, C.-H. Wu, Y.-C. Huang, Y.-C. Wang, R.-J. Jeng, K.-C. Ho, Achieving low-driving voltage electrochromic devices with N-methylphenothiazine derived ionic liquid, Chem. Eng. J. 420 (2021) 129821. https://doi.org/10.1016/j.cej.2021.129821.
[143] T. Taerum, O. Lukoyanova, R.G. Wylie, D.F. Perepichka, Synthesis, Polymerization, and Unusual Properties of New Star-Shaped Thiophene Oligomers, Org. Lett. 11 (2009) 3230–3233. https://doi.org/10.1021/ol901127q.
[144] C.L. Gaupp, D.M. Welsh, R.D. Rauh, J.R. Reynolds, Composite Coloration Efficiency Measurements of Electrochromic Polymers Based on 3,4-Alkylenedioxythiophenes, Chem. Mater. 14 (2002) 3964–3970. https://doi.org/10.1021/cm020433w.
[145] M. Fabretto, T. Vaithianathan, C. Hall, P. Murphy, P.C. Innis, J. Mazurkiewicz, G.G. Wallace, Colouration efficiency measurements in electrochromic polymers: The importance of charge density, Electrochem. Commun. 9 (2007) 2032–2036. https://doi.org/10.1016/j.elecom.2007.05.035.
[146] M.Y. Rusanova, P. Polášková, M. Muzikař, W.R. Fawcett, Electrochemical reduction of perchlorate ions on platinum-activated nickel, Electrochim. Acta. 51 (2006) 3097–3101. https://doi.org/10.1016/j.electacta.2005.08.044.
[147] T. Fujiwara, A. Muranaka, T. Nishinaga, S. Aoyagi, N. Kobayashi, M. Uchiyama, H. Otani, M. Iyoda, Preparation, Spectroscopic Characterization and Theoretical Study of a Three-Dimensional Conjugated 70 π-Electron Thiophene 6-mer Radical Cation π-Dimer, J. Am. Chem. Soc. 142 (2020) 5933–5937. https://doi.org/10.1021/jacs.9b13573.
[148] D.W. Zhang, J. Tian, L. Chen, L. Zhang, Z.T. Li, Dimerization of conjugated radical cations: An emerging non-covalent interaction for self-assembly, Chem. - An Asian J. 10 (2015) 56–68. https://doi.org/10.1002/asia.201402805.
[149] M. Kertesz, Pancake Bonding: An Unusual Pi-Stacking Interaction, Chem. - A Eur. J. 25 (2019) 400–416. https://doi.org/10.1002/chem.201802385.
[150] A.J. Varni, M. Kawakami, S.A. Tristram-Nagle, D. Yaron, T. Kowalewski, K.J.T. Noonan, Design, synthesis, and properties of a six-membered oligofuran macrocycle, Org. Chem. Front. 8 (2021) 1775–1782. https://doi.org/10.1039/d1qo00084e.
[151] T. Yamamoto, D. Komarudin, M. Arai, B.-L. Lee, H. Suganuma, N. Asakawa, Y. Inoue, K. Kubota, S. Sasaki, T. Fukuda, H. Matsuda, Extensive Studies on π-Stacking of Poly(3-alkylthiophene-2,5-diyl)s and Poly(4-alkylthiazole-2,5-diyl)s by Optical Spectroscopy, NMR Analysis, Light Scattering Analysis, and X-ray Crystallography, J. Am. Chem. Soc. 120 (1998) 2047–2058. https://doi.org/10.1021/ja973873a.
[152] J.K. Politis, M.D. Curtis, Poly(nonylbisoxazole): A Member of a New Class of Conjugated Polymer, Chem. Mater. 12 (2000) 2798–2804. https://doi.org/10.1021/cm000379o.
[153] M. Lanzi, E. Salatelli, L. Giorgini, M. Marinelli, F. Pierini, Effect of the incorporation of an Ag nanoparticle interlayer on the photovoltaic performance of green bulk heterojunction water-soluble polythiophene solar cells, Polymer (Guildf). 149 (2018) 273–285. https://doi.org/10.1016/j.polymer.2018.07.012.
[154] C.E. Johnson, D.S. Boucher, Poly(3-hexylthiophene) aggregate formation in binary solvent mixtures: An excitonic coupling analysis, J. Polym. Sci. Part B Polym. Phys. 52 (2014) 526–538. https://doi.org/10.1002/polb.23447.
[155] L.L. Miller, K.R. Mann, π-Dimers and π-Stacks in Solution and in Conducting Polymers, Acc. Chem. Res. 29 (1996) 417–423. https://doi.org/10.1021/ar9600446.
[156] S. Glenis, M. Benz, E. LeGoff, M.G. Kanatzidis, J.L. Schindler, C.R. Kannewurf, Polyfuran: A New Synthetic Approach and Electronic Properties, J. Am. Chem. Soc. 115 (1993) 12519–12525. https://doi.org/10.1021/ja00079a035.
[157] F. Parenti, F. Tassinari, E. Libertini, M. Lanzi, A. Mucci, π-Stacking signature in nmr solution spectra of thiophene-based conjugated polymers, ACS Omega. 2 (2017) 5775–5784. https://doi.org/10.1021/acsomega.7b00943.
[158] N. Elgiddawy, S. Ren, A. Yassar, A. Louis-Joseph, H. Sauriat-Dorizon, W.M.A. El Rouby, A.O. El-Gendy, A.A. Farghali, H. Korri-Youssoufi, Dispersible Conjugated Polymer Nanoparticles as Biointerface Materials for Label-Free Bacteria Detection, ACS Appl. Mater. Interfaces. 12 (2020) 39979–39990. https://doi.org/10.1021/acsami.0c08305.
[159] C. Scharsich, R.H. Lohwasser, M. Sommer, U. Asawapirom, U. Scherf, M. Thelakkat, D. Neher, A. Köhler, Control of aggregate formation in poly(3-hexylthiophene) by solvent, molecular weight, and synthetic method, J. Polym. Sci. Part B Polym. Phys. 50 (2012) 442–453. https://doi.org/10.1002/polb.23022.
[160] C.G. Wu, L.N. Chien, Π-Π Interaction Induced Secondary Doping in Conducting Poly-3-Alkylthiophenes, Synth. Met. 110 (2000) 251–255. https://doi.org/10.1016/S0379-6779(99)00289-1.
[161] D.I. Pattison, M. Lam, S.S. Shinde, R.F. Anderson, M.J. Davies, The nitroxide TEMPO is an efficient scavenger of protein radicals: Cellular and kinetic studies, Free Radic. Biol. Med. 53 (2012) 1664–1674. https://doi.org/10.1016/j.freeradbiomed.2012.08.578.
[162] Z. Zhang, A. Berg, H. Levanon, R.W. Fessenden, D. Meisel, On the interactions of free radicals with gold nanoparticles, J. Am. Chem. Soc. 125 (2003) 7959–7963. https://doi.org/10.1021/ja034830z.
[163] L. Li, C. Hao, R. Zhai, W. He, C. Deng, Study on the mechanism of free radical scavenger TEMPO blocking in coal oxidation chain reaction, Fuel. 331 (2023). https://doi.org/10.1016/j.fuel.2022.125853.
[164] M.P. Parker, C.A. Murray, L.R. Hart, B.W. Greenland, W. Hayes, C.J. Cardin, H.M. Colquhoun, Mutual Complexation between π–π Stacked Molecular Tweezers, Cryst. Growth Des. 18 (2018) 386–392. https://doi.org/10.1021/acs.cgd.7b01376.
[165] N.E. Singh-Miller, D.A. Scherlis, N. Marzari, Effect of Counterions on the Interactions of Charged Oligothiophenes, J. Phys. Chem. B. 110 (2006) 24822–24826. https://doi.org/10.1021/jp063478j.
[166] D.A. Scherlis, J.L. Fattebert, N. Marzari, Stacking of oligo- and polythiophene cations in solution: Surface tension and dielectric saturation, J. Chem. Phys. 124 (2006). https://doi.org/10.1063/1.2198811.
[167] M. Montejo, A. Navarro, G.J. Kearley, J. Vázquez, J.J. López-González, Intermolecular charge transfer and hydrogen bonding in solid furan, J. Am. Chem. Soc. 126 (2004) 15087–15095. https://doi.org/10.1021/ja040130y.