簡易檢索 / 詳目顯示

研究生: 徐泳欽
論文名稱: 高度形變微分同胚度量映射法應用於擴散頻譜影像對位之探討
A Large Deformation Diffecmorphic Metric Mapping Solution for Diffusion Spectrum Imaging Datasets
指導教授: 許靖涵
曾文毅
口試委員: 許靖涵
曾文毅
吳育德
王福年
江明彰
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 69
中文關鍵詞: 高度形變微分同胚度量映射法擴散頻譜影像影像對位
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁振造影技術目前已廣泛應用於臨床診斷與學術研究上,其中擴散磁振造影技術已發展成為探討大腦白質神經束的主要方法,現今已有許多不同的擴散磁振造影技術。藉由量測多張使用不同擴散梯度方向的擴散磁振影像,在水分子的擴散機率分布為高斯分布的假設下,擴散張量造影可有效預估某一體素內水分子的主要擴散方向。若我們假設此主要擴散方向與神經束走向一致,我們便能夠在活體上找出白質神經束的路徑。但擴散張量造影法於某一體素內僅能預估單一個主要擴散方向,為解決此問題,擴散頻譜造影使用不同擴散梯度方向與強度的組合,進而量測水分子的擴散機率分布。因此,擴散頻譜造影法可以更有效地找出白質神經束的路徑。
    然而不論是擴散張量造影或擴散頻譜造影,在比較分析不同群組的資料時,他們都面臨一個棘手的問題:如何將這些來自不同個體的資料進行影像對位?問題源自於這些擴散磁振資料並非一般常見的純量影像,擴散張量造影的資料結構為張量影像,而擴散頻譜造影則為機率分布影像,因此不能使用常見的純量影像對位方法。此類擴散磁振影像的對位,除了解剖結構,還須將擴散訊息(如擴散張量或擴散機率分布)進行對齊。對於擴散張量影像,已有許多學者提出不同的對位方法,但尚未有文獻提出擴散頻譜影像的對位方法。本論文的主要目的為使用新近發展的「高度形變微分同胚度量映射法」,針對擴散頻譜影像的資料結構發展相對應的對位方法。
    高度形變微分同胚度量映射法將兩個影像間的對位過程模擬成液體的流動,並定義兩影像間的差異函數。此法推導出,當差異函數於最小值時,此流動液體之速度場所須遵循的公式。因此高度形變微分同胚度量映射法所得之液體流動路徑為測地線,亦即此兩影像間的最短路徑。另外,此測地線可僅由初始動量(或初始速度)決定,故此法可將高度變異的非線性解剖影像置於同一座標空間進行線性分析。由於這些重要特性,本研究目的乃在將原發展於二維或三維的高度形變微分同胚度量映射法擴展至六維的擴散頻譜影像(三維影像空間,三維Q空間)。
    本研究針對擴散頻譜影像的六維資料結構,定義適當的形變轉換動作:令影像空間的形變場為影像空間的函數,並令Q空間的形變場同時為影像空間與Q空間的函數。在此定義下,本研究提出高度形變微分同胚度量映射法應用於擴散頻譜影像時所遵循的液體流動公式,此法稱之為LDDMM-DSI。慮及擴散頻譜影像的豐富資料量及數值運算時面臨的龐大電腦運算量,本論文亦提出有效的實施方案。此外,本研究進行數個驗證實驗,除探討參數的影響外,並比較LDDMM-DSI與其他對位方法的優劣。實驗顯示使用LDDMM-DSI法對擴散頻譜影像進行影像對位可獲得較佳之結果。除了完整提出LDDMM-DSI的數學架構與數值實施方案外,本論文亦以擴散頻譜影像模板示範LDDMM-DSI可能的應用。
    總結而言,在高度形變微分同胚度量映射法的架構下,本論文提出針對擴散頻譜影像的對位方法,LDDMM-DSI。不論以實驗的驗證結果來看,或以擴散頻譜影像模板的示範來觀察,LDDMM-DSI皆為擴散頻譜影像的有效對位方法。此法將有助於日後擴散頻譜影像的群組分析。


    Chinese Abstract i English Abstract iii Acknowledgement iv Contents v Figure List vii Table List viii Chapter 1 Introduction 1 1.1 Background 2 1.1.1 DW-MRI techniques 2 1.1.2 LDDMM 5 1.2 Spatial transformation methods for DW-MRI datasets 8 1.3 Motivation 11 Chapter 2 Theory 13 2.1 PDF space versus q-space 13 2.1 Problem formulation 15 2.2 LDDMM-DSI 19 2.3 The first derivative of the energy functional 21 Chapter 3 Numerical implementation 22 3.1 The Levenberg-Marquardt optimization method 22 3.2 Smooth Hilbert space V 24 3.3 Velocity field integration 25 3.4 Rigid body transformation 25 3.5 Multiresolution approach 26 3.6 The estimation algorithm 26 Chapter 4 Evaluation methods 28 4.1 Data acquisition 28 4.2 Participants 29 4.3 Image preprocessing 29 4.4 Evaluation indices 30 4.4.1 Inverse consistency 30 4.4.2 Orientational discrepancy 31 4.4.3 ODF divergence 32 4.4.4 Fiber dissimilarity 32 4.5 Experiments 34 4.5.1 Experiment 1: PDF space versus q-space 35 4.5.2 Experiment 2: Regularization exploration 36 4.5.3 Experiment 3: Comparison with other transformation methods 36 Chapter 5 Experiment results 39 5.1 Experiment 1: PDF space versus q-space 39 5.2 Experiment 2: Regularization exploration 42 5.3 Experiment 3: Comparison with other transformation methods 46 5.3.1 Inverse consistency error 46 5.3.2 Qualitative evaluation of transformation performance 48 5.3.3 LDDMM-DSI-rot versus LDDMM-MC-rot 51 5.3.4 LDDMM-DSI versus LDDMM-DSI-rot 53 Chapter 6 Application: DSI template construction 56 6.1 The estimation algorithm 56 6.2 Materials and methods 57 6.3 Results 58 Chapter 7 Discusstion and conclusions 60 References 63 Awards and Publications 67 Awards 67 Publications 67 Journal Articles 67 Conference Papers 67

    [1] P. J. Basser, J. Mattiello, and D. LeBihan, "Estimation of the effective self-diffusion tensor from the NMR spin echo," J Magn Reson B, vol. 103, pp. 247-54, Mar 1994.
    [2] D. S. Tuch, "Q-ball imaging," Magn Reson Med, vol. 52, pp. 1358-72, Dec 2004.
    [3] V. J. Wedeen, P. Hagmann, W. Y. Tseng, T. G. Reese, and R. M. Weisskoff, "Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging," Magn Reson Med, vol. 54, pp. 1377-86, Dec 2005.
    [4] M. F. Beg, M. I. Miller, A. Trouve, and L. Younes, "Computing Large Deformation Metric Mapping via Geodesic Flows of Diffeomorphisms," International Journal of Computer Vision, vol. 61, pp. 139-157, 2005.
    [5] T. E. Behrens, H. J. Berg, S. Jbabdi, M. F. Rushworth, and M. W. Woolrich, "Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?," Neuroimage, vol. 34, pp. 144-55, Jan 1 2007.
    [6] B. Jeurissen, A. Leemans, J. D. Tournier, D. K. Jones, and J. Sijbers, "Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging," Hum Brain Mapp, May 19 in press.
    [7] V. J. Wedeen, R. P. Wang, J. D. Schmahmann, T. Benner, W. Y. Tseng, G. Dai, D. N. Pandya, P. Hagmann, H. D'Arceuil, and A. J. de Crespigny, "Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers," Neuroimage, vol. 41, pp. 1267-77, Jul 15 2008.
    [8] D. S. Tuch, T. G. Reese, M. R. Wiegell, and V. J. Wedeen, "Diffusion MRI of complex neural architecture," Neuron, vol. 40, pp. 885-95, Dec 4 2003.
    [9] X. Pennec, R. Stefanescu, V. Arsigny, P. Fillard, and N. Ayache, "Riemannian elasticity: a statistical regularization framework for non-linear registration," Med Image Comput Comput Assist Interv, vol. 8, pp. 943-50, 2005.
    [10] J. Ashburner, "A fast diffeomorphic image registration algorithm," Neuroimage, vol. 38, pp. 95-113, Oct 15 2007.
    [11] X. Pennec, P. Cachier, N. Ayache, C. Taylor, and A. Colchester, "Understanding the “Demon’s Algorithm”: 3D Non-rigid Registration by Gradient Descent," in Medical Image Computing and Computer-Assisted Intervention – MICCAI’99, 1999, pp. 597-605.
    [12] J. P. Thirion, "Image matching as a diffusion process: an analogy with Maxwell's demons," Med Image Anal, vol. 2, pp. 243-60, Sep 1998.
    [13] U. Grenander, General Pattern Theory: A Mathematical Study of Regular Structures. USA: Oxford University Press, 1994.
    [14] G. E. Christensen, R. D. Rabbitt, and M. I. Miller, "Deformable templates using large deformation kinematics," IEEE Trans Image Process, vol. 5, pp. 1435-47, 1996.
    [15] P. Dupuis, U. Grenander, and M. I. Miller, "Variational problems on flows of diffeomorphisms for image matching," Q Appl Math, vol. 56, pp. 587-600, 1998.
    [16] A. Trouve, "An infinite dimensional group approach for physics based models in patterns recognition," Technical Report, 1995.
    [17] M. I. Miller, A. Trouve, and L. Younes, "Geodesic Shooting for Computational Anatomy," J Math Imaging Vis, vol. 24, pp. 209-228, Jan 31 2006.
    [18] Y. Cao, M. I. Miller, R. L. Winslow, and L. Younes, "Large deformation diffeomorphic metric mapping of vector fields," IEEE Trans Med Imaging, vol. 24, pp. 1216-30, Sep 2005.
    [19] D. C. Alexander, C. Pierpaoli, P. J. Basser, and J. C. Gee, "Spatial transformations of diffusion tensor magnetic resonance images," IEEE Trans Med Imaging, vol. 20, pp. 1131-9, Nov 2001.
    [20] M. C. Chiang, A. D. Leow, A. D. Klunder, R. A. Dutton, M. Barysheva, S. E. Rose, K. L. McMahon, G. I. de Zubicaray, A. W. Toga, and P. M. Thompson, "Fluid registration of diffusion tensor images using information theory," IEEE Trans Med Imaging, vol. 27, pp. 442-56, Apr 2008.
    [21] Y. Cao, M. I. Miller, S. Mori, R. L. Winslow, and L. Younes, "Diffeomorphic Matching of Diffusion Tensor Images," Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, vol. 2006, p. 67, Jul 5 2006.
    [22] C. Ceritoglu, K. Oishi, X. Li, M. C. Chou, L. Younes, M. Albert, C. Lyketsos, P. C. van Zijl, M. I. Miller, and S. Mori, "Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging," Neuroimage, vol. 47, pp. 618-27, Aug 15 2009.
    [23] H. J. Park, M. Kubicki, M. E. Shenton, A. Guimond, R. W. McCarley, S. E. Maier, R. Kikinis, F. A. Jolesz, and C. F. Westin, "Spatial normalization of diffusion tensor MRI using multiple channels," Neuroimage, vol. 20, pp. 1995-2009, Dec 2003.
    [24] W. Van Hecke, A. Leemans, E. D'Agostino, S. De Backer, E. Vandervliet, P. M. Parizel, and J. Sijbers, "Nonrigid coregistration of diffusion tensor images using a viscous fluid model and mutual information," IEEE Trans Med Imaging, vol. 26, pp. 1598-612, Nov 2007.
    [25] W. Van Hecke, J. Sijbers, E. D'Agostino, F. Maes, S. De Backer, E. Vandervliet, P. M. Parizel, and A. Leemans, "On the construction of an inter-subject diffusion tensor magnetic resonance atlas of the healthy human brain," Neuroimage, vol. 43, pp. 69-80, Oct 15 2008.
    [26] W. Van Hecke, J. Sijbers, S. De Backer, D. Poot, P. M. Parizel, and A. Leemans, "On the construction of a ground truth framework for evaluating voxel-based diffusion tensor MRI analysis methods," Neuroimage, vol. 46, pp. 692-707, Jul 1 2009.
    [27] D. Xu, X. Hao, R. Bansal, K. J. Plessen, and B. S. Peterson, "Seamless warping of diffusion tensor fields," IEEE Trans Med Imaging, vol. 27, pp. 285-99, Mar 2008.
    [28] D. Xu, S. Mori, D. Shen, P. C. van Zijl, and C. Davatzikos, "Spatial normalization of diffusion tensor fields," Magn Reson Med, vol. 50, pp. 175-82, Jul 2003.
    [29] X. Geng, T. J. Ross, H. Gu, W. Shin, W. Zhan, Y. P. Chao, C. P. Lin, N. Schuff, and Y. Yang, "Diffeomorphic image registration of diffusion MRI using spherical harmonics," IEEE Trans Med Imaging, vol. 30, pp. 747-58, Mar 2011.
    [30] D. Raffelt, J. D. Tournier, J. Fripp, S. Crozier, A. Connelly, and O. Salvado, "Symmetric diffeomorphic registration of fibre orientation distributions," Neuroimage, vol. 56, pp. 1171-80, Jun 1 2011.
    [31] X. Hong, L. R. Arlinghaus, and A. W. Anderson, "Spatial normalization of the fiber orientation distribution based on high angular resolution diffusion imaging data," Magn Reson Med, vol. 61, pp. 1520-7, Jun 2009.
    [32] J. Du, A. Goh, and A. Qiu, "Diffeomorphic Metric Mapping of High Angular Resolution Diffusion Imaging Based on Riemannian Structure of Orientation Distribution Functions," IEEE Trans Med Imaging, Dec 6 in press.
    [33] B. T. Yeo, T. Vercauteren, P. Fillard, J. M. Peyrat, X. Pennec, P. Golland, N. Ayache, and O. Clatz, "DT-REFinD: diffusion tensor registration with exact finite-strain differential," IEEE Trans Med Imaging, vol. 28, pp. 1914-28, Dec 2009.
    [34] P. T. Yap, Y. Chen, H. An, Y. Yang, J. H. Gilmore, W. Lin, and D. Shen, "SPHERE: SPherical Harmonic Elastic REgistration of HARDI data," Neuroimage, vol. 55, pp. 545-56, Mar 15 2011.
    [35] F. C. Yeh and W. Y. Tseng, "NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction," Neuroimage, vol. 58, pp. 91-9, Sep 1 2011.
    [36] D. Raffelt, J. D. Tournier, S. Rose, G. R. Ridgway, R. Henderson, S. Crozier, O. Salvado, and A. Connelly, "Apparent Fibre Density: a novel measure for the analysis of diffusion-weighted magnetic resonance images," Neuroimage, vol. 59, pp. 3976-94, Feb 15 in press.
    [37] L. Risser, F. X. Vialard, R. Wolz, M. Murgasova, D. D. Holm, and D. Rueckert, "Simultaneous multi-scale registration using large deformation diffeomorphic metric mapping," IEEE Trans Med Imaging, vol. 30, pp. 1746-59, Oct 2011.
    [38] A. Qiu, L. Younes, and M. I. Miller, "Principal component based diffeomorphic surface mapping," IEEE Trans Med Imaging, vol. 31, pp. 302-11, Feb 2012.
    [39] M. Vaillant, M. I. Miller, L. Younes, and A. Trouve, "Statistics on diffeomorphisms via tangent space representations," Neuroimage, vol. 23 Suppl 1, pp. S161-9, 2004.
    [40] J. Ashburner and K. J. Friston, "Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation," Neuroimage, vol. 55, pp. 954-67, Apr 1 2011.
    [41] T. G. Reese, O. Heid, R. M. Weisskoff, and V. J. Wedeen, "Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo," Magn Reson Med, vol. 49, pp. 177-82, Jan 2003.
    [42] L. W. Kuo, J. H. Chen, V. J. Wedeen, and W. Y. Tseng, "Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system," Neuroimage, vol. 41, pp. 7-18, May 15 2008.
    [43] Y. C. Hsu, C. H. Hsu, and W. Y. Tseng, "Correction for susceptibility-induced distortion in echo-planar imaging using field maps and model-based point spread function," IEEE Trans Med Imaging, vol. 28, pp. 1850-7, Nov 2009.
    [44] J. Ashburner and K. J. Friston, "Unified segmentation," Neuroimage, vol. 26, pp. 839-51, Jul 1 2005.
    [45] T. Rohlfing, "Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable," IEEE Trans Med Imaging, vol. 31, pp. 153-63, Feb 2012.
    [46] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, "In vivo fiber tractography using DT-MRI data," Magn Reson Med, vol. 44, pp. 625-32, Oct 2000.
    [47] T. E. Conturo, N. F. Lori, T. S. Cull, E. Akbudak, A. Z. Snyder, J. S. Shimony, R. C. McKinstry, H. Burton, and M. E. Raichle, "Tracking neuronal fiber pathways in the living human brain," Proc Natl Acad Sci U S A, vol. 96, pp. 10422-7, Aug 31 1999.
    [48] S. Mori, B. J. Crain, V. P. Chacko, and P. C. van Zijl, "Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging," Ann Neurol, vol. 45, pp. 265-9, Feb 1999.
    [49] J. Glaunes, A. Qiu, M. I. Miller, and L. Younes, "Large Deformation Diffeomorphic Metric Curve Mapping," Int J Comput Vis, vol. 80, pp. 317-336, Dec 1 2008.
    [50] S. Mori, K. Oishi, H. Jiang, L. Jiang, X. Li, K. Akhter, K. Hua, A. V. Faria, A. Mahmood, R. Woods, A. W. Toga, G. B. Pike, P. R. Neto, A. Evans, J. Zhang, H. Huang, M. I. Miller, P. van Zijl, and J. Mazziotta, "Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template," Neuroimage, vol. 40, pp. 570-82, Apr 1 2008.
    [51] J. Ma, M. I. Miller, A. Trouve, and L. Younes, "Bayesian template estimation in computational anatomy," Neuroimage, vol. 42, pp. 252-61, Aug 1 2008.
    [52] Y. C. Hsu, C. H. Hsu, and W. Y. Tseng, "A Large Deformation Diffeomorphic Metric Mapping Solution for Diffusion Spectrum Imaging Datasets_neuroimage," Neuroimage, in press.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE