研究生: |
車祐成 Che, Yo-Cheng. |
---|---|
論文名稱: |
高工作電壓之可撓式氧化釩 //氧化錳非對稱型固態超級電容器 High Working Voltage V2O5//MnO2 Asymmetric Solid State Supercapacitor |
指導教授: |
李志浩
Lee, Chih-Hao 陳錦明 Chen, Jin-Ming |
口試委員: |
陳燦耀
Chen, Tsan-Yao 張仍奎 Chang, Jeng-Kuei 鄧名傑 Deng, Ming-Jay |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 非對稱型超級電容器 、固態電解質 、可撓式黏土複合基材 、錳金屬氧化物 、釩金屬氧化物 、臨場快速X光吸收光譜 |
外文關鍵詞: | Asymmetric Supercapacitors, Solid state electrolyte, Flexible nanoclay composited substrate, Manganese oxide, Vanadium oxide, in-situ Quick X-ray Absorption Spectroscopy |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗中利用自行合成可彎曲式導電高分子/黏土複合材料(PEDOT:PSS/nanoclay composite),作為超級電容器的基板(substrate),此材料同時具備可提供高表面積奈米層狀結構以及提升機械強度等材料特性,並利用國家同步輻射廣角度X光散射(WAXS),了解複合式電極材料中黏土(Clay)材料所扮演的角色並搭配穿透式X光顯微攝影術(TXM)針對層狀結構和顆粒大小相互佐證,再進一步利用電化學合成法,將錳、釩金屬氧化物,分別搭載在基板(PEDOT:PSS/nanoclay composite substrate)上,以提升電極的比表面積與儲能效能。電解質的部分則採用PVA-LiClO4-Urea此三種化合物所構成的擬離子液體固態電解質(quasi-ionic liquid based solid state electrolyte),在進行充放電儲能反應時,不會受到水的限制而電解出氣體,能使電位窗加寬,再透過非對稱電極的設計使得整體能量密度提升達到253.9 Wh/kg。
超級電容器在充放電過程中,會牽涉到電極材料中金屬氧化物(錳、釩)的氧化價數的轉移,因此透過臨場快速X光吸收光譜(in-situ Quick X-ray Absorption Spectroscopy)結合時間解析,探討充放電對金屬氧化物價態的即時變化以及結構之變化趨勢。
In this thesis, the flexible substrate of supercapacitor was made from the PEDOT:PSS/nanoclay composited soft material. This nanostructure of the composited material can offer large surface area and strong mechanical properties. By using Synchrotron Radiation Wide-Angle X-ray Scattering (WAXS) and Transmission X-ray Microscopy (TXM) to characterize the lamellar structure and particle size of the composited material. Then coating Mn oxide and V oxide on the PEDOT:PSS/nanoclay composite substrate, respectively, by electrochemical deposition which can improve the surface area of electrodes and efficient energy storage. With PVA-LiClO4-Urea quasi-ionic liquid based solid state electrolyte cannot be limited by electrolyzing water during electrochemical reaction so the working potential can be broaden .The design of asymmetric electrode show the energy density of 253.9 Wh/kg.
During the supercapacitor charge/discharge cycling, the energy storage mechanism and the changing of oxide state (Mn and V) from the metal oxide electrodes were studied by using in-situ Qucik X-ray Absorption Spectroscopy. It can help to understand the changes of oxide states and the bond lengths during charge/discharge cycling.
[1] 美國能源資訊管理局 U.S. Energy Information Administration (EIA)
[2] B. Dunn, H. Kamath, and J. M. Tarascon, "Electrical Energy Storage for the Grid: A Battery of Choices", Science, vol. 334, pp. 928-935, 2011.
[3] D. Larcher and J. M. Tarascon, "Towards greener and more sustainable batteries for electrical energy storage", Nat. Chem., vol. 7, pp. 19-29, 2015.
[4] R. Madhu, K. V. Sankar, S. M. Chen, and R. K. Selvan, "Eco-friendly synthesis of activated carbon from dead mango leaves for the ultrahigh sensitive detection of toxic heavy metal ions and energy storage applications", RSC Adv., vol. 4, pp. 1225-1233, 2014.
[5] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials: present and future", Mater. Today, vol. 18, pp. 252-264, 2015.
[6] C. Choi, S. Kim, R. Kim, Y. Choi, S. Kim, H. Y. Jung, et al., "A review of vanadium electrolytes for vanadium redox flow batteries", Renew. Sust. Energ. Rev., vol. 69, pp. 263-274, 2017.
[7] Z. Sun, H. Cao, X. Zhang, X. Lin, W. Zheng, G. Cao, et al., "Spent lead-acid battery recycling in China - A review and sustainable analyses on mass flow of lead", Waste Manag., vol. 64, pp. 190-201, 2017.
[8] E. L. V. Eriksson, E. Mac, A. Gray, "Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review", Appl. Energy, vol. 202, pp. 348-364, 2017.
[9] Y. Huang and C. Zhi, "Functional flexible and wearable supercapacitors," J. Phys. D, vol. 50, pp. 273001, 2017.
[10] Y. Z. Zhang, Y. Wang, T. Cheng, W. Y. Lai, H. Pang, and W. Huang, "Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage," Chem. Soc. Rev., vol. 44, pp. 5181-5199, 2015.
[11] A. Divyashree, S. A. B. A. Manaf, S .Yallappa, K. Chitra, N. Kathyayini, G. Hegde, "Low cost, high performance supercapacitor electrode using coconut wastes: eco-friendly approach," J. Energy Chem., vol. 25, pp. 880-887, 2016.
[12] Electrochemical Energy Storage Systems
[13] M. J. Deng, K. W. Chen, Y. C. Che, I. J. Wang, C. M. Lin, J. M. Chen, et al., "Cheap, High-Performance, and Wearable Mn Oxide Supercapacitors with Urea-LiClO4 Based Gel Electrolytes," ACS Appl. Mater. Interfaces, vol. 9, pp. 479-486, 2017.
[14] F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, et al., "Latest advances in supercapacitors: from new electrode materials to novel device designs," Chem. Soc. Rev., vol. 46, pp. 6816-6854, 2017.
[15] Wikipedia contributors. (5 April 2019 10:56 UTC). Supercapacitor. Available: https://en.wikipedia.org/w/index.php?title=Supercapacitor&oldid=890754317
[16] S. Guo, F. Wang, H. Chen, H. Ren, R. Wang, and X. Pan, "Preparation and performance of polyvinyl alcohol-based activated carbon as electrode material in both aqueous and organic electrolytes," J. Solid State Electr., vol. 16, pp. 3355-3362, 2012.
[17] E. Frackowiak, et al, "Enhanced capacitance of carbon nanotubes through," Chem. Phys. Lett., vol. 361, pp. 35–41, 2002.
[18] P. Liu, J. Yan, X. Gao, Y. Huang, and Y. Zhang, "Construction of layer-by-layer sandwiched graphene/polyaniline nanorods/carbon nanotubes heterostructures for high performance supercapacitors," Electrochim. Acta, vol. 272, pp. 77-87, 2018.
[19] 宋承兆, 「奈米合成氫氧化鈷及鎳電極與超級容器的應用 奈米合成氫氧化鈷及鎳電極與超級容器的應用」,國立交通大學材料科學與工程學系, 碩士論文, 中華民國一百零五年.
[20] Z. S. Iro, "A Brief Review on Electrode Materials for Supercapacitor," International J. Electrochem. Sci., pp. 10628-10643, 2016.
[21] C. C. H, K. H. Chang, C. Y. Chou, "Textural and Capacitive Characteristics of Hydrothermally Derived RuO2 .xH2O Nanocrystallites: Independent Control of Crystal Size and Water Content," Chem. Mater., vol. 19, pp. 2112-2119, 2007.
[22] C. C. Hu, K. H. Chang, M. C. Lin,Y. T. Wu, "Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors", Nano Lett., vol. 6, pp. 2690-2695, 2006.
[23] M. Cakici, R. R. Kakarla, and F. Alonso-Marroquin, "Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes", Chem. Eng. J., vol. 309, pp. 151-158, 2017.
[24] Y. T. Weng, H. A. Pan, R. C. Lee, T. Y. Huang, Y. Chu, J. F. Lee, "Spatially Confined MnO2 Nanostructure Enabling Consecutive Reversible Charge Transfer from Mn(IV) to Mn(II) in a Mixed Pseudocapacitor-Battery Electrode," Adv. Energy Mater., vol. 5, p. 1500772, 2015.
[25] D. Wei, M. R. Scherer, C. Bower, P. Andrew, T. Ryhanen, and U. Steiner, "A nanostructured electrochromic supercapacitor," Nano Lett., vol. 12, pp. 1857-62, 2012.
[26] J. Zhu, L. Cao, Y. Wu, Y. Gong, Z. Liu, H. E. Hoster, "Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors," Nano Lett., vol. 13, pp. 5408-13, 2013.
[27] Z. Ma, X. Huang, S. Dou, J. Wu, and S. Wang, "One-Pot Synthesis of Fe2O3 Nanoparticles on Nitrogen-Doped Graphene as Advanced Supercapacitor Electrode Materials," J. Phys. Chem. C, vol. 118, pp. 17231-17239, 2014.
[28] T. Deng, W. Zhang, O. Arcelus, J. G. Kim, J. Carrasco, S. J. Yoo, "Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors," Nat. Commun., vol. 8, p. 15194,2017.
[29] X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, "Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes," Nano Res., vol. 3, pp. 643-652, 2010.
[30] K. Jost, G. Dion, Y. Gogotsi, "Textile energy storage in perspective," J. Mater. Chem. A, vol. 2, p. 10776, 2014.
[31] V. Gupta, N. Miura, "Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors," Electrochim. Acta, vol. 52, pp. 1721-1726, 2006.
[32] C. Wan, Y. Jiao, and J. Li, "Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes," J. Mater. Chem. A, vol. 5, pp. 3819-3831, 2017.
[33] R. B. Ambade, S. B. Ambade, N. K. Shrestha, R. R. Salunkhe, W. Lee, S. S. Bagde, "Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor applications," J. Mater. Chem. A, vol. 5, pp. 172-180, 2017.
[34] N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, "Asymmetric Supercapacitor Electrodes and Devices," Adv. Mater, vol. 29, p.1605336, 2017.
[35] Z. Niu, H. Dong, B. Zhu, J. Li, H. H. Hng, W. Zhou, "Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture," Adv. Mater., vol. 25, p. 1058, 2013.
[36] L. Demarconnay, E. R. Piñero, and F. Béguin, "A symmetric carbon/carbon supercapacitor operating at 1.6V by using a neutral aqueous solution," Electrochem. Commun., vol. 12, pp. 1275-1278, 2010.
[37] T. P. Rao, A. Kumar, V. M. Naik, and R. Naik, "Effect of carbon nanofibers on electrode performance of symmetric supercapcitors with composite α-MnO2 nanorods," J. Alloys Compd., vol. 789, pp. 518-527, 2019.
[38] H. Liu, W. Zhu, D. Long, J. Zhu, G. Pezzotti, "Porous V2O5 nanorods/reduced graphene oxide composites for high performance symmetric supercapacitors," Appl. Surf. Sci., vol. 478, pp. 383-392, 2019.
[39] V. Khomenko, E. Raymundo-Piñero, and F. Béguin, "Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium," J. Power Sources, vol. 153, pp. 183-190, 2006.
[40] J. X. Feng, S. H. Ye, X. F. Lu, Y. X. Tong, and G. R. Li, "Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device," ACS Appl. Mater. Interfaces, vol. 7, pp. 11444-51,2015.
[41] Y. G. Wang, Z. D. Wang, and Y. Y. Xia, "An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes," Electrochim. Acta, vol. 50, pp. 5641-5646, 2005.
[42] A. Liu, H. Zhang, G. Wang, J. Zhang, and S. Zhang, "Sandwich-like NiO/rGO nanoarchitectures for 4 V solid-state asymmetric-supercapacitors with high energy density," Electrochim. Acta, vol. 283, pp. 1401-1410, 2018.
[43] Z. Liu, H. Zhang, Q. Yang, and Y. Chen, "Graphene / V2O5 hybrid electrode for an asymmetric supercapacitor with high energy density in an organic electrolyte," Electrochim. Acta, vol. 287, pp. 149-157, 2018.
[44] J. W. Cheng, Zhang, L. Chen, S. Tang, M. Deng and Y. Dua, "All-solid-state asymmetric supercapacitors based on Fe-doped mesoporous Co3O4 and threedimensional reduced graphene oxide electrodes with high energy and power densities," Nanoscale, vol. 9, pp. 15423–15433, 2017.
[45] R. Sahoo, D. T. Pham, T. H. Lee, T. H. T. Luu, J. Seok, and Y. H. Lee, "Redox-Driven Route for Widening Voltage Window in Asymmetric Supercapacitor," ACS Nano, vol. 12, pp. 8494-8505,2018.
[46] M. J. Deng, T. H. Chou, L. H. Yeh, J. M. Chen, and K. T. Lu, "4.2 V wearable asymmetric supercapacitor devices based on a VOx//MnOx paper electrode and an eco-friendly deep eutectic solvent-based gel electrolyte," J. Mater. Chem. A, vol. 6, pp. 20686-20694, 2018.
[47] W. Tang, L. Liu, S. Tian, L. Li, Y. Yue, Y. Wu, et al., "Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material," Chem. Commun., vol. 47, pp. 10058-60,2011.
[48] P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, et al., "Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes," Nano Lett., vol. 14, pp. 731-6, 2014.
[49] R. Wang, Y. Ma, H. Wang, J. Key, D. Brett, S. Ji, et al., "A cost effective, highly porous, manganese oxide/carbon supercapacitor material with high rate capability," J. Mater. Chem. A, vol. 4, pp. 5390-5394, 2016.
[50] D. P. D. K. Jost, L. M. Haverhals, E. K. Brown, M. Langenstein, H. C. De Long, P. C. Trulove, Y. Gogotsi, G. Dion, "Natural Fiber Welded Electrode Yarns for Knittable Textile Supercapacitors," Adv. Energy Mater., vol. 5, p. 1401286, 2015.
[51] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, "A review of electrolyte materials and compositions for electrochemical supercapacitors," Chem. Soc. Rev., vol. 44, pp. 7484-539,2015.
[52] A. S. Ulihin, Y. G. Mateyshina, and N. F. Uvarov, "All-solid-state asymmetric supercapacitors with solid composite electrolytes," Solid State Ion., vol. 251, pp. 62-65, 2013.
[53] Y. N. Sudhakar and M. Selvakumar, "Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors," Electrochim. Acta, vol. 78, pp. 398-405, 2012.
[54] A. Brandt, S. Pohlmann, A. Varzi, A. Balducci, and S. Passerini, "Ionic liquids in supercapacitors," MRS Bull., vol. 38, pp. 554-559, 2013.
[55] M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, "Ionic-liquid materials for the electrochemical challenges of the future," Nat. Mater., vol. 8, pp. 621-9, 2009.
[56] Q. Zhang, K. De Oliveira Vigier, S. Royer, and F. Jerome, "Deep eutectic solvents: syntheses, properties and applications," Chem. Soc. Rev., vol. 41, pp. 7108-7146, 2012.
[57] B. Shen, X. Zhang, R. Guo, J. Lang, J. Chen, and X. Yan, "Carbon encapsulated RuO2 nano-dots anchoring on graphene as an electrode for asymmetric supercapacitors with ultralong cycle life in an ionic liquid electrolyte," J. Mater. Chem. A, vol. 4, pp. 8180-8189, 2016.
[58] A. Lewandowski, A. Olejniczak, M. Galinski, and I. Stepniak, "Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes," J. Power Sources, vol. 195, pp. 5814-5819, 2010.
[59] X. L. Wang, Y. Ling, T. Zhai, H. Wang, Y. Tong, and Y. Li, "LiCl/PVA Gel Electrolyte Stabilizes Vanadium Oxide Nanowire Electrodes for Pseudocapacitors," ACS Nano, vol. 6, pp. 10296-10302, 2012.
[60] H. Gao, J. Li, and K. Lian, "Alkaline quaternary ammonium hydroxides and their polymer electrolytes for electrochemical capacitors," RSC Adv., vol. 4, pp. 21332-21339, 2014.
[61] K. Sun, F. Ran, G. Zhao, Y. Zhu, Y. Zheng, M. Ma, et al., "High energy density of quasi-solid-state supercapacitor based on redox-mediated gel polymer electrolyte," RSC Adv, vol. 6, pp. 55225-55232, 2016.
[62] K. Shimamoto, K. Tadanaga, and M. Tatsumisago, "All-solid-state electrochemical capacitors using MnO2/carbon nanotube composite electrode," Electrochim. Acta, vol. 109, pp. 651-655, 2013.
[63] S.Bellani, et al., "ITO nanoparticles break optical transparency/high-areal capacitance trade-off for advanced aqueous supercapacitors," J. Mater. Chem. A, vol. 5, pp. 25177-25186, 2017.
[64] X. Zhou, Q. Chen, A. Wang, J. Xu, S. Wu, and J. Shen, "Bamboo-like Composites of V2O5/Polyindole and Activated Carbon Cloth as Electrodes for All-Solid-State Flexible Asymmetric Supercapacitors," ACS Appli. Mater. Interfaces, vol. 8, pp. 3776-3783, 2016.
[65] R. O. Makiniemi, P. Das, D. Honders, K. Grygiel, D. Cordella, C. Detrembleur, et al., "Conducting, Self-Assembled, Nacre-Mimetic Polymer/Clay Nanocomposites," ACS Appli. Mater. Interfaces, vol. 7, pp. 15681-15685,2015.
[66] J. Zhao, S. Xu, K. Tschulik, R. G. Compton, M. Wei, D.O.Hare, et al., "Molecular-Scale Hybridization of Clay Monolayers and Conducting Polymer for Thin-Film Supercapacitors," Adv. Funct. Mater., vol. 25, pp. 2745-2753, 2015.
[67] S. Maiti, A. Pramanik, S. Chattopadhyay, G. De, and S. Mahanty, "Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte," J. Colloid Interface Sci., vol. 464, pp. 73-82, 2016.
[68] K. H. Chang and C. C. Hu, "H2V3O8 single-crystal nanobelts: Hydrothermal preparation and formation mechanism," Acta Mater., vol. 55, pp. 6192-6197, 2007.
[69] C. C. Hu, C. M. Huang, and K. H. Chang, "Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors," J. Power Sources, vol. 185, pp. 1594-1597, 2008.
[70] C. M. Huang, C. C. Hu, K. H. Chang, J. M. Li, and Y. F. Li, "Pseudocapacitive Characteristics of Vanadium Oxide Deposits with a Three-Dimensional Porous Structure," J. Electrochem. Soc., vol. 156, p. A667, 2009.
[71] J. D. Xie, H. Y. Li, T. Y. Wu, J. K. Chang, and Y. A. Gandomi, "Electrochemical energy storage of nanocrystalline vanadium oxide thin films prepared from various plating solutions for supercapacitors," Electrochim. Acta, vol. 273, pp. 257-263, 2018.
[72] T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, and D. Bélanger, "Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors," J. Electrochem. Soc., vol. 153, p. 2171, 2006.
[73] T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, and D. Bélanger, "Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors," Appli. Phys. A, vol. 82, pp. 599-606, 2005.
[74] M. Toupin, T. Brousse, and D. Bélanger, "Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide," Chem. Mater., vol. 14, pp. 3946-3952, 2002.
[75] M. Toupin, T. Brousse, and D. Bélanger, "Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor," Chem. Mater., vol. 16, pp. 3184-3190, 2004.
[76] F. Wu, R. Chen, F. Wu, L. Li, B. Xu, S. Chen, et al., "Binary room-temperature complex electrolytes based on LiClO4 and organic compounds with acylamino group and its characterization for electric double layer capacitors," J. Power Sources, vol. 184, pp. 402-407, 2008.
[77] H. S. W. M. A. R. A. Buckingham, "Errata: The Collision of Neutrons with Deuterons and the Reality of Exchange Forces," Phys. Rev., vol. 71, p. 558, 1947.
[78] https://www.nsrrc.org.tw/chinese/acceleratorTPS.aspx
[79] 胡宇光, 「相對比X光顯微技術」,科學期刊 , 405期,72頁,中華民國九十五年。
[80] 胡宇光, 「利用超高解析度X光顯微技術觀測次細胞結構」,自然科學簡訊,18期,96~99頁,中華民國九十五年。
[81] 趙芙涵, 「8-11 keV 穿透式X 光顯微鏡系統中Zone plate 傾斜之研究」,國立交通大學光電工程學系,碩士論文,中華民國九十七年。
[82] K. Siegbahn, "ESCA -Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy," Nova Acta Regiae Soc. Sci. Upsaliensis, vol. 4, 1967.
[83] Prof. Dr. Karin Jacobs, Ultra High Vacuum Lab, Saarland University
[84] 包志文,「快速掃描X光吸收光譜實驗技術說明會」,2018國家同步輻射研究中心第二十五屆用戶年會暨研討會,台灣,中華民國一百零七年
[85] B. Tian, W. Tang, C. Su, and Y. Li, "Reticular V2O5˙0.6 H2O Xerogel as Cathode for Rechargeable Potassium Ion Batteries," ACS Appli. Mater. Interfaces, vol. 10, pp. 642-650, 2018.
[86] G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. De Gryse, "Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+)," J. Electron Spectrosc., vol. 135, pp. 167-175, 2004.
[87] M. J. Deng, P. J. Ho, C. Z. Song, S. A. Chen, J. F. Lee, J. M. Chen, et al., "Fabrication of Mn/Mn oxide core–shell electrodes with three-dimensionally ordered macroporous structures for high-capacitance supercapacitors," Energ. Environ. Sci., vol. 6, p. 2178, 2013.
[88] https://xpssimplified.com/elements/manganese.php
[89] M. T. Lee, W. T. Tsai, M. J. Deng, H. F. Cheng, I. W. Sun, and J. K. Chang, "Pseudocapacitance of MnO2 originates from reversible insertion/desertion of thiocyanate anions studied using in situ X-ray absorption spectroscopy in ionic liquid electrolyte," J. Power Sources, vol. 195, pp. 919-922, 2010.
[90] J. K. Chang, M. T. Lee, W. T. Tsai, M. J. Deng, and I. W. Sun, "X-ray Photoelectron Spectroscopy and in Situ X-ray Absorption Spectroscopy Studies on Reversible Insertion/Desertion of Dicyanamide Anions into/from Manganese Oxide in Ionic Liquid," Chem. Mater., vol. 21, pp. 2688-2695, 2009.
[91] Y. K. Ho, C. C. Chang, D. H. Wei, C. L. Dong, C. L. Chen, J. L. Chen, et al., "Characterization of gasochromic vanadium oxides films by X-ray absorption spectroscopy," Thin Solid Films, vol. 544, pp. 461-465, 2013.
[92] T. Yao, X. Zhang, Z. Sun, S. Liu, Y. Huang, Y. Xie, et al., "Understanding the nature of the kinetic process in a VO2 metal-insulator transition," Phys. Rev. Lett, vol. 105, p. 226405, 2010.
[93] H. Wang, J. Isobe, D. Matsumura, and H. Yoshikawa, "In situ X-ray absorption fine structure studies of amorphous and crystalline polyoxovanadate cluster cathodes for lithium batteries," J. Solid State Electr., vol. 22, pp. 2067-2071, 2018.