簡易檢索 / 詳目顯示

研究生: 黃文瑞
Wen Ruei Huang
論文名稱: 多平行微流道系統沸騰不穩定性之分析
指導教授: 潘欽
李進得
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 80
中文關鍵詞: 微流道,不穩定性
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文主要發展單一沸騰微流道與多重平行沸騰微流道在強制對流條件下,以雙相流均質模式探討其系統穩定性。
    在非線性分析模式方面,對於每一通道以Galerkin 節點近似法假設相鄰兩節點的焓為線性分佈後,直接將均質模式下有關流動之非線性偏微分統御方程式轉換為一組非線性之常微分程式,而得到時域的非線性分析模式。而藉此針對單一沸騰微流道與多重平行沸騰微流道做穩定性分析,並研究其非線性振盪行為之特性。
    研究的成果中顯示微通道系統屬低壓系統,具有高比容比的特性,且在不同通道數的微通道系統中,其穩定運轉區皆非常的小。因此,相較於一般尺度的沸騰系統而言,微通道系統是較不穩定的。不同通道數其振盪現象分析中,在較低的乾度時(x<0.3),主要發生的不穩定類型為流衝不穩定性。系統幾何參數和質量流率對穩定性的分析方面,發現質量流率對穩定性的影響最為顯著,而通道長度、入口流阻和 值的改變亦可以較為次要性的提高系統的穩定性。道數的增加可以加大系統的阻泥項,使得系統較為穩定。在本研究中,以三通道系統呈現最穩定的現象。在多通道系統發生極限循環時,不同的通道會產生不同相位的振盪,且其振盪週期可能一大一小成對的形式出現。


    目錄 頁次 摘要.............................................................................................................I 致謝……………………………………………………………………...II 目錄……………………………………………………………………..III 表目錄…………………………………………………………………..VI 圖目錄………………………………………………………………….VII 符號說明………………………………………………………………..IX 第一章 緒論………………...………………………………………….1 1-1 前言………………...………………………………………....1 1-2 微通道沸騰熱傳的簡介………………...………...………….1 1-3 研究動機與方法………………...……………...…………….2 1-4 論文架構………………...……………………………...…….2 第二章 研究背景和文獻回顧………………...……………………….4 2-1 雙相流不穩定之類型………………...………………...…….4 2-2 雙相流之分析模式………………...…………………...…….9 2-3 穩定性分析方法………………...…………………………..10 2-4 微流道系統之特性………………...……………….……….11 2-5 文獻回顧………………...…………………………….…….12 第三章 沸騰微流道分析模式………………...…………………..….16 3-1 均質雙相流模式………………...…………………….…….16 3-1.1 假設………………...……………………………….16 3-1.2 統御方程式………………...……………………….16 3-2 雙相流模式的建立………………...………………………..17 3-2.1 單流道沸騰系統動態………………...…………….18 3-2.2 多流道沸騰系統動態………………...…………….25 第四章 分析方法………………...………………………………….29 4-1 數值方法………………...…………………………………..29 4-1.1 穩態解分析-副程式 DNSQE………………...……..29 4-1.2 動態解分析-副程式 DDRIV2………………...…….29 4-2 參數設定與精度分析………………...……………………..30 第五章 單流道穩定性分析………………...……………….………34 5-1 黏滯係數混合模式的比較………………...…………..……34 5-2 系統壓力的決定………………...……..……………………36 5-3 單流道穩定性圖譜分析………………...………………..…38 5-4 單流道振盪現象分析………………...………..……………46 5-4.1 振盪圖譜分析………………...…………………...…46 5-4.2 極限循環振盪頻率分析………………..........………49 第六章 多流道穩定性分析………………...…………………….…53 6-1 多流道入口流阻的效應………………...……..……………53 6-2 流道數目的效應………………...…………………………..54 6-3 振盪現象的探討………………...……………..……………56 第七章 結論與建議………………...……………………….………64 7-1 論文研究成果………………...……………………………..64 7-2 未來研究建議………………...……………………………..66 附錄A………………...…………………………………………………69

    參考文獻
    潘欽,“沸騰熱傳與雙相流”,國立編譯館,2001。
    林永能,“沸騰通道之非線性熱流分析”,碩士論文,清華大學核子工程研究所,1992。
    李進得,“雙相流非線性模式的飛展及其應用”,博士論文,清華大學工程與系統科學所,2000。
    李柏蒼, “單管矽質微通道沸騰熱傳之探討”,碩士論文,清華大學工程與系統科學所,2003。
    Bao, Z.Y., Fletcher, D.F., Haynes, B.S., 2000. Flow boiling heat transfer of Freon R11 and HFCFC123 in narrow passages. Int. J. Heat and Mass Transfer 43, 3347-3358.
    Boure, J., Bergles, A.E.,Tong, L.S., 1973. Review of two-phase flow instability. Nuclear Engineering and Design 25, 165-192.
    Bookamp, P.A.M., Miesen, R.H.M., 1996. Classification of instabilities in parallel two-phase flow. Int. J. Multiphase Flow 22, 67-88.
    Clausse, A., Lahey, R.T., 1998. An analysis of stability and oscillation modesd in boiling multichannel loops using parameter perturbation methods. Int. J. Heat and Mass Transfer 32, 2055-2064.
    Chung, P.M.-Y., Kawaji, M., 2004. The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels. Int. J. Multiphase Flow 30, 735-761.
    Chavan, N.S., Bhattacharya, A., Iyer, K., 2005. Modeling of two-phase flow instabilities in microchannels. In: Proceeding of 3rd International Conference on Microchannels and Minichannels, June 13-15, 2005, Toronto, Ontario, Canada.
    Delmastro, D., Juanico, L., Clausse, A., 2001. A delay theory for boiling flow stability analysis. Int. J. Multiphase Flow 27, 657-671.
    Hsieh, S.S., Tsai, H.H., Lin, C.Y., Huang, C.F., Chien, C.M., 2004. Gas flow in a long microchannel. Int. J. Heat and Mass Transfer 47, 3877-3887.
    Judy, J., Maynes, D., Webb, B.W., 2002. Characterization of frictional pressure drop for liquid flow through micorchannels. Int. J. Heat and Mass Transfer 45, 3477-3489.
    Kawahara, A., Chung, P.M.-Y., Kawaji, M., 2002. Investigation of
    two-phase flow pattern, void fraction and pressure drop in a microchannel. Int. J. Multiphase Flow 28, 1411-1435.
    Kandlikar, S.G., 2002. Fundamental issues related to flow boiling in minichannels and microchannels. Experimental Thermal and Fluid Science 26, 389-407.
    Lee, J.D., Pan, C., 2005. Nonlinear analysis fro a double-channel
    two-phase natural circulation loop undser low-pressure conditions. annals of Nuclear Energy 32, 299-329.
    Peng, X.F., Hu, H.Y., and Wang, B.X., 1998. Boiling nucleation during liquid flow in microchannels. Int. J. Heat Mass Transfer 41, 101-106.
    Qiu, S., Takahashi, M. Jia, D. and Su, G., 2003. Density wave instability of sodium boiling two-phase flow in vertical annulus at low pressure. J. Nuclear Science and Technology 40, 493-500.
    Qu, W., Mudawar, I., 2003. Measurement and prediction of pressure drop
    in two-phase micro-channel heat sinks. Int. J. Heat and Mass Transfer 46, 2737-2753.
    Thome, J.R., Dupont, V., Jacobi, A.M., 2004. Heat transfer model for evaporation in microchannels Part I: presentation of the model. Int. J. Heat and Mass Transfer 47, 3375-3385.
    Tran, T.T., Wambsganss, M.W., France, D.M., 1996. Small circular and rectangular channel boiling with two micro-channels, Part I: Two-phase flow patterns. Int. J. Multiphase Flow 25, 337-394.
    Thome, J.R., 2004. Boiling in microchannels: a review of experiment and theory. Int. J. Heat and Fluid Flow 25, 128-139.
    Wojtan, L., Ursenbachser, T., Thome, J.R., 2005. Investingation of flow boiling in horizontal tubes: Part I- A new diabatic two-phase flow pattern map. Int. J. Heat and Mass Transfer 48, 2955-2969.
    Xu, J., Zhou, J., Gan, Y., 2004. Static and dynamic flow instability of a parallel microchannel heat sink at high heat fluxes. Energy Conversion & Management 46, 313-334.
    Zhang, L., Koo, J.M., Jiang, L., Asheghi, M., 2002. Measuremients and modeling of two-phase flow in microchannels with nearly constant heat flux boundary conditions. J. Microelectromechanical System 11, NO. 1.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE