簡易檢索 / 詳目顯示

研究生: 林世峰
LIN, Shih-Feng
論文名稱: 紫式決策分析建構工業3.5之傳統辦公室清潔之數位轉型及其實證研究
UNISON Framework for exploring Digital Transformation of Labor Services via industry3.5 and An Empirical study of Office Cleaning
指導教授: 丘宏昌
Chiu, Hung-Chang
簡禎富
Chien, Chen-Fu
口試委員: 吳吉政
Wu, Jei-Zheng
彭金堂
Peng, Chin-Tang
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 經營管理碩士在職專班
Business Administration
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 32
中文關鍵詞: 自動化數位化紫試分析決策法
外文關鍵詞: Automation, Digitization, In-depth Interview Method
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這人力短缺時期,許多企業正面臨著從傳統模式轉變為更自動化和數位化模式的挑戰。清潔服務作為一種勞務服務,不僅影響辦公環境的品質,也直接影響員工的生產力和健康;更要尋求解決方案應對此人力短缺情境,本研究旨在探討勞務服務辦公室清潔在人力短缺時期尤其是辦公室清潔服務如何應對,藉由簡禎富教授所提出工業3.5策略使得辦公室清潔服務有轉型應對的曙光。
    本研究以紫式決策分析架構為基礎,建構一套提供服務清潔之公司方案評估模式,讓清潔服務能在滿足客戶需求與公司利益最大化下之清潔服務方案,探討在人力缺乏的時代,如何從傳統清潔模式轉變到自動化及數位化清潔。本研究以A公司提供清潔服務為案例,並探討3種人力與自動化服務方案,A公司對於3大方案的價值評估。
    實證研究顯示,在提供人力與自動化設備清潔各半方案中,可不大幅增加成本的情況下顯著提高清潔效率和量能,面對自動化清潔轉型企業也需要固有的人力勞動服務才能達到作家效果。透過本研究所提出的評估架構可幫助企業在這個轉型時期進行適應,對清潔產業做出貢獻。
    綜合上述分析,我們可以深入探討辦公室清潔服務在工業3.5策略轉變階段中的角色,並探討其如何適應人力短缺的變革。本研究結果為辦公室清潔服務轉型以及提升勞動力適應人力短缺時代的技能,提供了寶貴的見解。


    The study examines the transition from conventional cleaning models to automated and digitalized ones in the context of labor constraints, with a particular emphasis on the office cleaning service industry. The objective of the research is to investigate the ways in which office cleaning services can adapt and flourish in the face of the scarcity of human resources. The potential for the transformation of office cleaning services is presented by the emergence of Industry 3.5 strategies, as proposed by Dr. Chen-Fu Chien.
    The study develops an evaluation model for cleaning service providers by utilizing the UNISON Decision Analysis Framework. This model facilitates the selection of cleaning service solutions that optimize both customer satisfaction and company profits. The investigation explores the transition from conventional cleaning methods to automated cleaning in a time of labor scarcity. It examines three distinct service models that combine labor service and automated cleaning Services, using Company A as a case study, and analyzes Company A's value assessment of these three models.
    The "half human labor and half automated equipment cleaning" model is the most effective approach, as evidenced by empirical findings. This method substantially improves the quality and efficiency of cleaning without resulting in substantial cost increases. The study also emphasizes the importance of maintaining human labor services in order to achieve optimal cleansing results, despite the presence of automation. This research's evaluation framework has the potential to assist businesses in overcoming the obstacles of this transitional period, thereby fostering the growth of the cleaning industry.

    In summary, the research offers valuable insights into the function of office cleaning services during the Industry 3.5 transition and their adaptation to labor shortages. The research results provide valuable guidance for the transformation of office cleaning services and the improving of workforce skills in response to the challenges of labor scarcity.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 第二章 文獻探討 3 2.1 紫式決策分析架構 3 2.2 產業或領域基礎知識介紹 6 2.3 相關文獻整理與評析 8 2.4 排序次序重心權重法SMATER 9 第三章 研究方法 11 3.1 了解問題與資料準備 12 3.2 影響關係:建構評估準則與屬性 13 3.3 客觀敘述:定義屬性與衡量尺度 15 3.4 綜合判斷與最適決策 19 第四章 實證研究 22 4.1 實證研究問題之背景與情境說明 22 4.2實驗設計與參數設定說明 24 4.3 結果討論 28 第五章 結論與建議 29 參考文獻 31

    王毓茹(2023),已經祭出高薪、甚至跨產業搶人, 為什麼還是找不到人?3 張圖解答缺工現況,經理人。
    林繼勇、簡禎富、胡志翰(2008),紫式決策分析以建構液晶原料廠製程確效評估模式,品質學報,15卷5期,頁385-398。
    政府熱焦點(2019),AI與大數據強化數位決策 工業3.5智慧製造最佳路徑,今周刊。
    陳伯安(2013),紫式決策分析以建構客戶服務人力資源配置規劃之決策模型,國立清華大學科技管理學院碩士論文。
    簡禎富(2014),決策分析與管理:紫式決策分析以全面提升決策品質(第二版),雙葉書廊,台北。
    簡禎富、胡志翰(2011),全面資源管理架構-以晶圓廠為實證,品質學報,18卷5期,頁1-26。
    簡禎富、游智閔、徐紹鐘(2009),紫式決策分析以建構半導體晶圓廠人力規劃決策模型,管理與系統,16卷2期,頁157-180。
    簡禎富(2019),工業3.5:台灣企業邁向智慧製造與數位決策的戰略,天下雜誌,台北。
    劉懷東(2014),紫式決策分析以建構半導體設備商客戶支援服務最適人力規劃與配置決策模型,國立清華大學科技管理學院碩士論文。
    饒達仁(2023),全球缺工時代 企業掀起自動化浪潮,工商時報。
    Cinar, Z.-M., Nuhu, A.,-A, Zeeshan, Q., Korhan, O., Asmael, M., and Safaei, B. (2020), “Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0,” Sustainability, Vol. 12, No. 19, pp. 8211.
    Djellal, F. (2022), “Innovation trajectories and employment in the cleaning industry,” New Technology, Work and Employment, Vol. 17, pp. 119–131.
    Durge, V. C. and Sangle, S. (2015), “Adoption of clean technology for sustainable development: a literature review,” International Journal of Environmental Technology and Management, Vol. 18, No. 4, pp. 275.
    Guzel, N. B. and Tasman, O. (2021), “Diffusion of 5G Technology and Potential Impact on Business Models: Technology Enabled Value Creation in the Cleaning Industry,” Digitala Vetenskapliga Arkivet, pp. 1-95.
    Inshakova, A.O., Frolova, E.E., Rusakova, E.P., and Kovalev, S.I. (2020), “The model of distribution of human and machine labor at intellectual production in industry 4.0,” Journal of Intellectual Capital, Vol. 21, No. 4, pp. 601-622.
    Klungseth, N. J. and Olsson, N. O. E. (2013), “Norwegian cleaning research: an overview and categorization,” Facilities, Vol. 31, No. 7/8, pp. 290-313.
    Prassler, E., Ritter, A., Schaefer, C., and Fiorini, P. (2000), “A short history of cleaning robots,” Autonomous Robots, Vol. 9, pp. 211–226.
    Satyro, W. C. (2023), “Industry 4.0 Implementation Projects The Cleaner Production Strategy—A Literature Review,” Sustainability, Vol. 15, pp. 2161.
    Tripathi, V., Chattopadhyaya, S., Mukhopadhyay, A.K., Sharma, S., Li, C., and Di Bona, G. (2022), “A Sustainable Methodology Using Lean and Smart Manufacturing for the Cleaner Production of Shop Floor Management in Industry 4.0,” Mathematics, Vol. 10, pp. 347.

    QR CODE