研究生: |
陳穩智 Chen, Wen-Chih |
---|---|
論文名稱: |
電漿吸收探針模擬與實驗分析 Simulation and Experimental Analysis of Plasma Absorption Probe |
指導教授: | 柳克強 |
口試委員: |
林滄浪
張家豪 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 電漿鞘層 、電漿前鞘層 、電漿吸收探針 |
外文關鍵詞: | Sheath, Persheath, Plasma Absorption Probe |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
電漿製程在整個半導體產業中佔有重要的地位,而電漿的穩定性是影響整個電漿製程良率的重要關鍵,其中電漿密度是最重要的參數之一。因此在製程中必須隨時確保電漿的狀態,即時監測製程腔體內的電漿狀況得知電漿狀態,並調整製程參數來達到所需的製程狀態顯得相當的重要。
本研究使用電漿吸收探針(Plasma Absorption Probe, PAP)進行電漿密度的測量,其原理是利用表面波與探針結構及電漿中的電子發生共振,當共振時表面波能量將會傳遞至電漿中,因此表面波能量不會產生反射,經由量測反射係數與頻率的關係找出反射係數最低點,此時的頻率即為共振吸收頻率,借由建立電漿環境及探針結構來模擬分析不同電漿密度下的共振吸收頻率。在電漿環境中因為探針與電漿間存在著電位差,使得探針與電漿介面間會產生電漿鞘層(Sheath)與電漿前鞘層(Presheath)的過度區域,由於這兩個區域內的電子密度與電子分佈不同於電漿本體,因此在電漿環境模型內必須加入這兩個區域的條件,使得模擬條件更接近於真實環境,增加模擬的準確性。本研究重點在於建立電漿環境模型,模擬分析電漿環境對PAP探針量測共振吸收頻率的影響,及共振吸收頻率與電漿密度的關係曲線方程式,將實驗所量測到的共振吸收頻率帶入模擬曲線方程式中即可獲得電漿密度。
由於量測探針必須置入電漿腔體中,因此探針體積的大小必定會影響區域電漿的分佈,傳統上使用的大直徑(r =5.58 mm)電漿吸收探針 LPAP(Large PAP)的體積,相較於小直徑(r =2 mm) 電漿吸收探針SPAP(Small PAP)的體積大出許多,因此LPAP對區域性電漿分佈的影響會比SPAP來的高,所以必須選擇製作小直徑SPAP電漿吸收探針,用來降低體積對於區域性電漿分佈的影響,並進行SPAP探針的模擬與量測,分析不同半徑大小的探針對於共振吸收頻率及電漿密度量測的影響。
本實驗使用電感耦合式電漿蝕刻機台(Inductively Coupled Plasma, ICP)進行量測電漿密度的實驗,使用LPAP與SPAP探針在相同的電漿條件下進行量測。由LPAP與SPAP量測電漿密度的結果顯示,隨著ICP功率的增加,共振吸收頻率會隨之提高,而使用共振吸收頻率計算的電漿密度也會隨之增加,且LPAP與SPAP兩者進行量測計算獲得的電漿密度非常吻合,因此在相同的量測結果下,使用小體積的SPAP探針做為量測工具是較好的選擇。
參考文獻
[1] K. Nakamura, "Plasma Absorption Probe for Measuring Electron Density in an Environment Soiled with Processing Plasmas," 1999.
[2] K. Nakamura, M. Ohata, and H. Sugai, "Highly sensitive plasma absorption probe for measuring low-density high-pressure plasmas," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, p. 325, 2003.
[3] C. Scharwitz, M. Böke, S.-H. Hong, and J. Winter, "Experimental Characterisation of the Plasma Absorption Probe," Plasma Processes and Polymers, vol. 4, pp. 605-611, 2007.
[4] B. Li, H. Li, Z. Chen, J. Xie, and W. Liu, "Experimental and Simulational Studies on the Theoretical Model of the Plasma Absorption Probe," 2010.
[5] H. Sugai and K. Nakamura, "Novel Plasma Monitoring by Surface Wave Probe."
[6] C. Scharwitz, M. Böke, and J. Winter, "Optimised Plasma Absorption Probe for the Electron Density Determination in Reactive Plasmas," Plasma Processes and Polymers, vol. 6, pp. 76-85, 2009.
[7] B. Li, H. Li, Z. Chen, J. Xie, and W. Liu, "Dual-role plasma absorption probe to study the effects of sheath thickness on the measurement of electron density," Journal of Physics D: Applied Physics, vol. 43, p. 325203, 2010.
[8] D. D. Blackwell, D. N. Walker, and W. E. Amatucci, "Measurement of absolute electron density with a plasma impedance probe," Review of Scientific Instruments, vol. 76, p. 023503, 2005.
[9] C. Scharwitz, "The Plasma Absorption Probe:Optimisation by model-based design variations," Dissertation zur Erlangung des Doktorgrades, 2007.
[10] M. Lapke, T. Mussenbrock, and R. P. Brinkmann, "The multipole resonance probe: A concept for simultaneous determination of plasma density, electron temperature, and collision rate in low-pressure plasmas," Applied Physics Letters, vol. 93, p. 051502, 2008.
[11] M. Lapke, J. Oberrath, C. Schulz, R. Storch, T. Styrnoll, C. Zietz, P. Awakowicz, R. P. Brinkmann, T. Musch, T. Mussenbrock, and I. Rolfes, "The multipole resonance probe: characterization of a prototype," Plasma Sources Science and Technology, vol. 20, p. 042001, 2011.
[12] C. Schulz, M. Lapke, J. Oberrath, and R. Storch, "the multipole resonance probe:realization of an optimized radio-frequency plasma probe based on active plasma resonance spectroscopy," 2010.
[13] C. Scharwitz, M. Böke, J. r. Winter, M. Lapke, T. Mussenbrock, and R. P. Brinkmann, "Practical implementation of a two-hemisphere plasma absorption probe," Applied Physics Letters, vol. 94, p. 011502, 2009.
[14] 謝政宏, "研製應用於監測電漿製程系統中電漿密度之傳輸線式微波感測器," 國立清華大學工程與系統科學系碩士論文, 2004.
[15] 王瀚廷, "研製應用於監測電漿製程系統中電漿密度之平面式微波感測器," 國立清華大學工程與系統科學系碩士論文, 2005.
[16] 鄭景元, "應用於監測電漿製程系統中電漿密度之傳輸線式微波干涉儀之研製," 國立清華大學工程與系統科學系碩士論文, 2006.
[17] 梁耀文, "研製應用於監測電漿密度之微帶線式微波干涉儀," 國立清華大學工程與系統科學系碩士論文, 2007.
[18] 黃竑旻, "電漿電子密度與射頻峰值電壓回授控制電漿蝕刻製程之研究," 國立清華大學工程與系統科學系碩士論文, 2008.
[19] 顏才華, "空橋式微帶線微波干涉儀之研製," 國立清華大學工程與系統科學系碩士論文, 2008.
[20] 王景弘, "M型微帶線微波干涉儀之研製及應用於電漿密度量測分析探討," 國立清華大學工程與系統科學系碩士論文, 2010.
[21] L. Oksuz and N. Hershkowitz, "First Experimental Measurements of the Plasma Potential throughout the Presheath and Sheath at a Boundary in a Weakly Collisional Plasma," Physical Review Letters, vol. 89, 2002.
[22] M. A. L. e. al., "Principles of Plasma Discharges and Materials Processing 2th," 2005.
[23] A. Meige, O. Sutherland, H. B. Smith, and R. W. Boswell, "Ion heating in the presheath," Physics of Plasmas, vol. 14, p. 032104, 2007.
[24] J. Gudmundsson and M. Lieberman, "Ar and Xe Velocities near the Presheath-Sheath Boundary in an Ar/Xe Discharge," Physical Review Letters, vol. 107, 2011.
[25] R. L. Stenzel, "Microwave resonator probe for localized density measurements in weakly magnetized plasmas," Review of Scientific Instruments, vol. 47, p. 603, 1976.
[26] R. B. Piejak, "The hairpin resonator: A plasma density measuring technique revisited," Journal of Applied Physics, vol. 95, p. 3785, 2004.
[27] R. B. Piejak, J. Al-Kuzee, and N. S. J. Braithwaite, "Hairpin resonator probe measurements in RF plasmas," Plasma Sources Science and Technology, vol. 14, pp. 734-743, 2005.
[28] 高主祐, "研製微波共振式電漿密度感測器及其量測分析," 國立清華大學工程與系統科學系碩士論文, 2011.
[29] 曹善勇, Ansoft HFSS 磁場分析與應用實例, 2010.