簡易檢索 / 詳目顯示

研究生: 林士傑
Lin, Shih-Chieh
論文名稱: 掌性超分子與掌性嵌段共聚物自組裝之掌性訊息傳遞
Chiral Information Transfer in Self-assembly of Chiral Supramolecules and Chiral Block Copolymers
指導教授: 何榮銘
Ho, Rong-Ming
口試委員: 許千樹
Hsu, Chain-Shu
長谷川 博一
Hirokazu Hasegawa
劉瑞雄
Liu, Rai-Shung
蔡敬誠
Tsai, Jing-Cherng
劉瑞祥
Liu, Jui-Hsiang
蔣酉旺
Chiang, Yeo-Wan
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 160
中文關鍵詞: 自組裝超分子嵌段共聚物掌性旋性螺旋結構
外文關鍵詞: self-assembly, supramolecule, block copolymer, chirality, helicity, helical structure
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this study, we aim to examine the mechanism of chiral information transfer by using chiral supramolecules and chiral block copolymers for self-assembly so as to achieve the helicity control of helical architectures at different length scales. First, a typical kind of achiral bent-core molecule, 1,3-phenylene bis[4-(4-n-heptyloxybenzoyloxy) benzoates] (BC7), and a linear shaped molecule, 1,4-phenylene bis[4-(4-n- heptyloxybenzoyloxy) benzoates] (LC7), were synthesized for self-assembly. Specific banana phase with chirality has been identified from the BC7 molecules. Systematic studies with respect to the mechanism for the formation of helical superstructures from molecular level were thus carried out. Interestingly, intense CD appeared after the formation of BC7 aggregates with helical superstructures resulting from self-assembly in solution whereas CD is silent and only lamellar crystal can be observed for LC7 aggregates, demonstrating the formation of helical superstructures from molecular chirality due to specific molecular geometry. Nevertheless, the helicity control in those helical morphologies remains challenging. To achieve the helicity control via homochirality transfer from configurational chirality into superstructural chirality, asymmetric chiral bent-core molecules, 3-[(4-{[4-(heptyloxy)benzoyl]oxy} benzoyl)oxy] phenyl 4-[(4-{[(1R)-1-methylheptyl]oxy}benzoyl)oxy] benzoate (BC7R) and 3-[(4-{[4-(heptyloxy)benzoyl]oxy}benzoyl)oxy] phenyl 4-[(4-{[(1S)-1-methylheptyl]oxy}benzoyl)oxy] benzoate (BC7S), by introducing chiral entities to the chain end, have been synthesized for self-assembly. Mirror-imaged CD spectra with split-type Cotton effect can be observed after the formation of self-assembled aggregates of the BC7R and BC7S, suggesting the formation of intermolecular exciton couplet with opposite optical activities for the BC7R and BC7S. Both twisted and helical ribbons with single handedness corresponding to the twisting character of intermolecular exciton couplet can be found in the aggregates. As a result, the mechanism of chiral information transfer for the self-assembly of chiral bent-core molecules to achieve the helicity control of helical architectures at different length scales was suggested.
    In contrast to the small molecules or oligomers, macromolecules give rise to another dimension for the self-assembling behavior because of the varieties of chain conformations, in particular helical conformations. Polylactides is a chiral polymer which can be easily obtained by polymerization of L-lactide and D-lactide so as to form enantiomerically pure chiral polymers, poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA), respectively. To determine the type of chiral entities (i.e., configurational chirality) on the polymer backbone, circular dichroism (CD) experiments were executed by observation of carboxylic and carboxylate electric transitions of lactic acids and polylactides, respectively. Positive Cotton effect can be observed in L-lactic acid whereas negative Cotton effect is found in D-lactic acid, suggesting that the UV absorption with respect to carboxylic electric transition of lactic acid are indeed affected by the chiral center. Similar results can also be found in PLLA and PDLA, and the CD intensity of polylactide is three times larger than that of lactic acid. We hypothesize that the enhancement in intensity is attributed to the presence of the helical conformation in chiral polylactide. To further examine the suggested helical conformation and to identify corresponding helicity (i.e., conformational chirality), vibrational CD (VCD) experiments were conducted by observation of IR absorptions with respect to carbonyl stretching motion. Mirror-imaged VCD spectra with split-type Cotton effect can be observed in PLLA and PDLA because of the intramolecular exciton couplet with opposite chirality whereas no specific VCD signal appears in lactic acids due to the absence of chiral effect on corresponding IR absorptions. The VCD results indicate that PLLA and PDLA adopt left- and right-handed helical conformations in solution and also in solid state. Accordingly, a block copolymer (BCP) with a chiral block (i.e., helical conformation) is deigned and referred as chiral block copolymer (BCP*) for self-assembly to fabricate helical nanostructures. A helical phase (H* phase) can be formed in polystyrene-b-poly(L-lactide) (PS-PLLA) and polystyrene-b- poly(D-lactide) (PS-PDLA) whereas no such phase can be obtained in achiral polystyrene-b-poly(L,D-lactide) (PS-PLA), reflecting the chiral effect on BCP self-assembly. However, the handedness of H* phase (i.e., phase chirality) is not able to be directly determined from TEM because of two-dimensional projection problem. To directly visualize real space morphologies, TEM tomography (i.e., three-dimensional TEM) was conducted; opposite handedness of helical microdomains can be found in PS-PLLA and PS-PDLA. As a result, the evolution of chiral information transfer in different levels can be examined so as to give complementary information for homochiral transfer mechanisms in nature.


    Abstract Contents List of Figures List of Schemes List of Tables Chapter 1 Introduction 1.1 Self-assembly and Supramolecular Chemistry 1.2 Self-assembly of Block Copolymer 1.3 Helical Architectures in Different Length Scales 1.3.1 Helical Conformations 1.3.2 Helical Superstructures 1.3.3 Helical Phases 1.4 Helical Assembly of Chiral Block Copolymers (BCP*) 1.4.1 Helical Conformations 1.4.2 Helical Superstructures 1.4.3 New Phases in BCP* 1.5 Principles of Circular Dichroism and Exciton Chirality Method 1.6 Theory of Tilted Chiral Lipid Bilayers (TCLB) 1.7 Chiral Information Transfer 1.7.1 From Configurational Chirality to Conformational Chirality 1.7.2 From Configurational Chirality to Superstructural Chirality 1.7.3 From Configurational Chirality to Phase Chirality 1.7.4 From Conformational Chirality to Superstructural Chirality Chapter 2 Objectives Chapter 3 Experimental Section 3.1 Materials 3.1.1 Synthesis of Achiral and Chiral Bent-core Molecules 3.1.2 Synthesis of Polylactide Homopolymers 3.1.3 Synthesis of Polylactide-Containing Block Copolymers….62 3.2 Preparation of Bulk Sample 3.3 Templated Sol-Gel Reaction 3.4 Characterization and Instrumentation 3.4.1 Differential Scanning Calorimetry (DSC) 3.4.2 Polarized Optical Microscopy (POM) 3.4.6 Scanning Electron Microscopy (SEM) 3.4.5 Scanning Probe Microscopy (SPM) 3.4.3 Transmission Electron Microscopy (TEM) 3.4.4 Electron Tomography (3D-TEM) 3.4.7 Small-angle X-ray Scattering (SAXS) 3.4.8 Circular Dichroism (CD) 3.4.9 Vibrational Circular Dichroism (VCD) Chapter 4 Results and Discussion 4.1 Hierarchical Superstructures with Helical Sense in Self-assembly of Achiral Bent-core Molecules 4.1.1 Self-assembly of Achiral Bent-core Molecules in Solution 4.1.2 Self-assembled Superstructures of Achiral Molecules in Solution 4.1.3 Structural Determination of Self-assembled Morphologies 4.1.4 Proposed Mechanism for Formation of Self-assembled Helical Superstructures 4.2 Hierarchical Superstructures with Helical Sense Control from Self-assembly of Chiral Bent-core Molecules 4.2.1 Self-assembly of Chiral Bent-core Molecules in Solution 4.2.2 Self-assembled Superstructures with Helical Sense Control 4.2.3 Proposed Mechanism for Formation of Superstructures 4.2.4 Co-assembly of Enantiomeric Chiral Mixtures and Racemate 4.3 Chiral Information Transfer in Self-assembly of Chiral Block Copolymers (BCPs*) 4.3.1 Characterization of Polylactide-containing Homopolymers and Block Copolymers 4.3.2 Configurational Chirality in Polylactide Homopolymers and Polylactide-containing Block Copolymers 4.3.3 Conformational Chirality in Polylactide Homopolymers and Polylactide-containing Block Copolymers 4.3.4 Phase Chirality in Polylactide-containing Chiral Block Copolymers Chapter 5 Conclusions Chapter 6 References Publications Acknowledgements

    [1] Lehn, J. M. Science 1985, 227, 849.
    [2] Whitesides, G. M.; Grzybowski, B. Science, 2002, 295, 2418.
    [3] Whitesides, G. M.; Boncheva, M. Proc. Natl. Acad. Sci. USA 2002, 99, 4769.
    [4] Petsko, G. A.; Ringe, D. Protein Structure and Function. London: New Science Press Ltd, 2004.
    [5] Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature 1988, 334, 598.
    [6] Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    [7] Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32.
    [8] Shen, H.; Eisenberg, A. J. Phys. Chem. B 1999, 103, 9473.
    [9] Discher, D. E.; Eisenberg, A. Science 2002, 297, 967.
    [10] Fujiki, M. Macromol. Rapid Commun. 2001, 22, 539.
    [11] Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. Chem. Rev. 2009, 109, 6102.
    [12] Green, M. M.;Nolte, R. J. M.;Meijer, E.W. Materials-Chirality: Volume 24 of Topics in Stereochemisty. New Jersey: John Wiley & Sons, Inc. Press 2003.
    [13] Farina, M. Top Stereochem. 1987, 17, 1.
    [14] Yoder, M. D.; Keen, N. T.; Jurnak, F. Science 1993, 260, 1503.
    [15] Cornelissen, J. J. L. M.; Donners, J. J. J. M.; Gelder, R.; Graswinckel W. S. ; Metselaar, G. A.; Rowan, A.E.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 2001, 293, 676.
    [16] Nolte, R. J. M.; Beijnen, A. J. M. V.; Drenth, W. J. Am. Chem. Soc. 1974, 96, 5932.
    [17] Fujiki, M. Top Curr. Chem. 2008, 284, 119.
    [18] Fujiki, M. J. Am. Chem. Soc. 1994, 116, 6017.
    [19] Hartgerink, J.D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684.
    [20] Song, J.; Cheng, Q.; Kopta, S. Stevens, R. C. J. Am. Chem. Soc. 2001, 123, 3205.
    [21] Schnur, J. M.; Ratna, B. R.; Selinger, J. V.; Singh, A.; Jyothi, G.; Easwaran, K. R. K. Science 1994, 264, 945.
    [22] Schnur, J. Science 1993, 262, 1669.
    [23] Sakurai, S.; Shinkai, S. J. Am. Chem. Soc. 2000, 122, 4520.
    [24] Menger, F. M.; Caran, K. L. J. Am. Chem. Soc. 2000, 122, 11679.
    [25] Engelkamp, H.; Middelbeck, S.; Nolte, R. J. M. Science 1999, 284, 785.
    [26] Nakashima, N.; Asakuma, S.; Kunitake, T. J. Am. Chem. Soc. 1985, 107, 509.
    [27] John, G.; Masuda, M.; Okada, Y.; Yase, K.; Shimizu, T. Adv. Mater. 2001, 13, 715.
    [28] Fuhrhop, J. H.; Helfrich, W. Chem. Rev. 1993, 93, 1565.
    [29] Jung, J. H.; John, G.; Yoshida, K.; Shimizu, T. J. Am. Chem. Soc. 2002, 124, 10674.
    [30] Sung, C. H.; Kung, L. R.; Hsu, C. S.; Lin, T. F.; Ho, R. M. Chem. Mater. 2006, 18, 352.
    [31] Lin, T. F.; Ho, R. M.; Sung, C. H.; Hsu, C. S. Chem. Mater. 2006, 18, 5510.
    [32] Lin, T. F.; Ho, R. M.; Sung, C. H.; Hsu, C. S. Chem. Mater. 2008, 20, 1404.
    [33] Sommerdijk, N. A. J. M.; Holder, S. J.; Hiorns, R. C.; Jones, R. G.; Nolte, R. J. M. Macromolecules 2000, 33, 8289.
    [34] Panitch, A.; Yamaoka, T.; Fournier, M. J.; Mason, T. L.; Tirrell, D. A. Macromolecules 1999, 32, 1701.
    [35] Krejchi, M. T.; Atkins, E. D. T.; Waddon, A. J.; Fournier, J.; Mason, T. L.; Tirrell, D. A. Science 1994, 265, 1427.
    [36] Aggeli, A.; Nyrkova, I. A.; Bell, M.; Harding, R.; Carrick, L.; McLeish, T. C. B.; Semenov, A. N.; Boden, N. Proc. Natl. Acad. Sci. USA 2001, 98, 11857.
    [37] Aggeli, A.; Bell, M.; Carrick, L.; Fishwick, C. W. G.; Harding, R.; Mawer, P. J.; Radford, S. E.; Strong, A. E.; Boden, N. J. Am. Chem. Soc. 2003, 125, 9619.
    [38] Pelzl, G.; Diele, S.; Weissflog, W. Adv. Mater. 1999, 11, 707.
    [39] Reddy,R. A.; Tschierske, C. J. Mater. Chem. 2006, 16, 907.
    [40] Takezoe, H.; Tahanishi, Y. Jap. J. Appl. Phys. 2006, 45, 597.
    [41] Link, D. R.; Natale, G.; Shao, R.; Maclennan, J. E.; Clark, N. A.; Korblova, E.; Walba, D. M. Science 1997, 278, 1924.
    [42] Walba, D. M.; Korblova, E.; Shao, R.; Maclennan, J. E.; Link, D. R.; Glaser, M. A.; Clark, N. A. Science 2000, 288, 2181.
    [43] Araoka, F.; Ha, N. Y.; Kinoshita, Y.; Park, B.; Wu, J. W.; Takezoe, H. Phys. Rev. Lett. 2005, 94, 137801.
    [44] Walba, D. M.; Eshdat, L.; Korblova, E.; Shoemaker, R. K. Cryst. Growth Des. 2005, 5, 2091.
    [45] Choi, S.-W.; Kang, S.; Takanishi, Y.; Ishikawa, K.; Watanabe, J.; Takezoe, H. Angew. Chem. Int. Ed. 2006, 45, 6503.
    [46] Pelzl, G.; Diele, S.; Jakli, A.; Lischka, C; Wirth, I.; Weissflog, W. Liq. Cryst. 1999, 26, 135.
    [47] Jakli, A.; Lischka, C; Weissflog, W.; Pelzl, G.; Saupe, A. Liq. Cryst. 2000, 27, 1405.
    [48] Murthy, H. N. S.; Sadashiva, B. K. Liq. Cryst. 2003, 30, 1051.
    [49] Coleman, D. A.; Fernsler, J.; Chattham, N.; Nakata, M.; Takanishi, Y.; Korblova, E.; Link, D. R.; Shao, R. F.; Jang, W. G.; Maclennan, J. E.; Mondainn-Monval, O.; Boyer, C.; Weissflog, W.; Pelzl, G.; Chien, L. C.; Zasadzinski, J.; Watanabe, J.; Walba, D. M.; Takezoe, H.; Clark, N. A. Science 2003, 301, 1204.
    [50] Hough, L. E.; Jung, H. T.; Kruerke, D.; Heberling, M. S.; Nakata, M.; Jones, C. D.; Chen, D.; Link, D. R.; Zasadzinski, J.; Heppke, G.; Rabe, J. P.; Stocker, W.; Korblova, E.; Walba, D. M.; Glaser, M. A.; Clark, N. A. Science 2009, 325, 456.
    [51] Sekine, T.; Niori, T.; Sone, M.; Watanabe, J.; Choi, S.-W.; Takanishi, Y.; Takezoe, H. Jpn. J. Appl. Phys. 1997, 36, 6455.
    [52] Thisayukta, J.; Nakayama, Y.; Kawauchi, S.; Takezoe, H.; Watanabe, J. J. Am. Chem. Soc. 2000, 122, 7441.
    [53] Gorecka, E.; Nakata, M.; Mieczkowski, J.; Takanishi, Y.; Ishikawa, K.; Watanabe, J.; Takezoe, H.; Eichhorn, S. H.; Swager, T. M. Phys. Rev. Lett. 2000, 85, 2526.
    [54] Sekine, T.; Niori, T.; Watanabe, J.; Furukawa, T.; Choi, S. W.; Takezoe, H. J. Mater. Chem. 1997, 7, 1307.
    [55] Watanabe, J.; Niori, T.; Sekine, T.; Takezoe, H. Jpn. J. Appl. Phys. 1998, 37, L139.
    [56] Heppke, G.; Moro, D. Science 1998, 279, 1872.
    [57] Klok, H. A.; Lecommandoux, S. Adv. Mater. 2001, 13, 1217.
    [58] Klok, H. A.; Langenwalter, J. F.; Lecommandoux, S. Macromolecules 2000, 33, 7819.
    [59] Jha, S. K.; Cheon, K. S.; Green, M. M.; Selinger, J. V. J. Am. Chem. Soc. 1999, 121, 1665.
    [60] Green, M. M.; Peterson, N. C.; Sato, T.; Teramoto, A.; Cook, R.; Lifson, S. Science 1995, 268, 1860.
    [61] Green, M. M.; Reidy, M. P.; Johnson, R. D.; Darling, G.; O’Leary, D. J.; Willson, G. J. Am. Chem. Soc. 1989, 111, 6452.
    [62] Pino, P.; Lorenzi, G. P. J. Am. Chem. Soc. 1960, 82, 4745.
    [63] Pino, P.; Carlini, C.; Chiellini, E.; Ciardelli, F.; Salvadori, P. J. Am. Chem. Soc. 1968, 90, 5025.
    [64] Green, M. M.; Garetz, B. A.; Munoz, B.; Chang, H. P. J. Am. Chem. Soc. 1995, 117, 4181.
    [65] Green, M. M.; Park, J. W.; Sato, T.; Teramoto, A.; Lifson, S.; Selinger, R. L. B.; Selinger, J. V. Angew. Chem. Int. Ed. 1999, 38, 3138.
    [66] Yashima, E.; Maeda, K.; Furusho, Y. Acc. Chem. Res. 2008, 41, 1166.
    [67] Sommerdijk, N. A. J. M.; Lambermon, M. H. L.; Feiters, M. C.; Nolte, R. J. M.; Wanenburg, B. Z. Chem. Commun. 1997, 1423.
    [68] Kunitake, T.; Yamada, N. Chem. Commun. 1986, 655.
    [69] Kunitake, T.; Kim, J. M.; Ishikawa, Y. J. Chem. Soc. Perkin. Trans. 1991, 2, 885.
    [70] Sommerdijk, N. A. J. M.; Lambermon, M. H. L.; Feiters, M. C.; Nolte, R. J. M.; Wanenburg, B. Z. Chem. Commun. 1997, 455.
    [71] Yanagawa, H.; Ogawa, Y.; Furuta, H.; Tsuno, K. J. Am. Chem. Soc. 1989, 111, 4567.
    [72] Hafkamp, R. J. H.; Feiters, M. C.; Nolte, R. J. M. Angew. Chem. 1994, 106, 1054.
    [73] van Hest, J. C. M.; Delnoye, D. A. P.; Baars, M. W. P. L.; van Genderen, M. H. P.; Meijer, E. W. Science 1995, 268, 1592.
    [74] Zhang, L.; Yu, K.; Eisenberg, A. Science 1996, 272, 1777.
    [75] Hamley, I. W.; Ansari, A.; Castelletto, V.; Nuhn, H.; Rosler, A.; Klok, H. A. Biomacromolecules 2005, 6, 1310.
    [76] Rosler, A.; Klok, H. A.; Hamley, I. W.; Castelletto, V.; Mykhaylyk, O. O. Biomacromolecules 2003, 4, 859.
    [77] Capito, R. M.; Azevedo, H. S.; Velichko, Y. S.; Mata, A.; Stupp, S. I. Science 2008, 319, 1812.
    [78] Maeda, T.; Furusho, Y.; Sakurai, S. I.; Kumaki, J.; Okoshi, K.; Yashima, E. J. Am. Chem. Soc. 2008, 130, 7938.
    [79] Hu, J.; Liu, G.; Nijkang, G. J. Am. Chem. Soc. 2008, 130, 3236.
    [80] Wang, X.; Guerin, G.; Wang, H.; Wang, Y.; Manners, I.; Winnik, M. A. Science 2007, 317, 644.
    [81] Zheng, R.; Liu, G.; Yan, X. J. Am. Chem. Soc. 2005, 127, 15358.
    [82] Zhang, L.; Eisenberg, A. J. Am. Chem. Soc. 1996, 118, 3168.
    [83] Cai, C.; Lin, J.; Chen, T.; Wang, X. S.; Lina, S. Chem. Commun. 2009, 2709.
    [84] Chen, C.-K.; Lin, S.-C.; Ho, R.-M.; Chiang, Y.-W.; Lotz, B. Macromolecules 2010, 43, 7752.
    [85] Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
    [86] Matsen, M. W.; Bates, F. S. Macromolecules 1995, 28, 8796.
    [87] Ho, R. M.; Chiang, Y. W.; Tsai, C. C.; Lin, C. C.; Ko, B. T.; Huang, B. H. J. Am. Chem. Soc. 2004, 126, 2704.
    [88] Tseng, W. H.; Chen, C. K.; Chiang, Y. W.; Ho, R. M. J. Am. Chem. Soc. 2009, 131, 1356.
    [89] Ho, R. M.; Chiang, Y. W.; Chen, C. K.; Wang, H. W.; Hasegawa, H.; Akasaka, S.; Thomas, E. L.; Burger, C.; Hsiao, B. S. J. Am. Chem. Soc. 2009, 131, 18533.
    [90] Ho, R. M.; Chen, C. K.; Chiang, Y. W. Adv Mater 2006, 18, 2355.
    [91] Chao, C. C.; Chen, C. K.; Chiang, Y. W.; Ho, R. M. Macromolecules 2008, 41, 3949.
    [92] Rodger, A. Circular Dichroism and Linear Dichroism. Oxford University Press, USA, 1997.
    [93] Nakanishi, K.; Berova, N.; Woody, R. W. Circular Dichroism Principles and Applications. VCH Press, USA, 1994.
    [94] Karada, N.; Nakanishi, K. Acc. Chem. Res. 1972, 5, 257.
    [95] Harada, N.; Ohashi, M.; Nakanishi, K. J. Am. Chem. Soc. 1968, 90, 7349.
    [96] Fischbeck, A.; Bartke, N.; Humpf, H.-U. Monatshefte fur Chemie 2005, 136, 397.
    [97] Helfrich, W.; Prost, J. Phys. Rev. A 1988, 38, 3065.
    [98] Nandi, N.; Bagchi, B. J. Am. Chem. Soc. 1996, 118, 11208.
    [99] Selinger, J. V.; Schnur, J. M. Phys. Rev. Lett. 1993, 71, 4091.
    [100] Ou-Yang, Z. C.; Liu, J. X. Phys. Rev. Lett. 1990, 65, 1679.
    [101] Ou-Yang, Z. C.; Liu, J. X. Phys. Rev. A 1991, 43, 6826.
    [102] Selinger, J. V.; MacKintosh, F. C.; Schnur, J. M. Phys. Rev. E 1996, 53, 3804.
    [103] Nandi, N.; Bagchi, B. J. Phys. Chem. A 1997, 101, 1343.
    [104] Caffrey, M.; Hogan, J; Rudolph, A. S. Biochemistry 1991, 30, 2134.
    [105] Caffrey, M.; Cheng, A. Curr. Opin. Struct. Biol. 1995, 5, 548.
    [106] Ho, R. M.; Chen, C. K.; Chiang, Y. W. Macromol. Rapid Commun. 2009, 30, 1439.
    [107] Li, C. Y.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann, I. K.; Chien, L. C.; Harris, F. W.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 72.
    [108] Yashima, E.; Maeda, K.; Nishimura, T. Chem. Eur. J. 2004, 10, 42.
    [109] Lifson, S.; Andreola, C.; Peterson, N. C.; Green, M. M. J. Am. Chem. Soc. 1989, 111, 8850.
    [110] Yashima, E.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1995, 117, 11596.
    [111] Yashima, E.; Maeda, K. Macromolecules 2008, 41, 3.
    [112] Green, M. M.; Cheon, K. S.; Yang, S. Y.; Park, J. W.; Swansburg, S.; Liu, W. Acc. Chem. Res. 2001, 34, 672.
    [113] Messmore, B. W.; Sukerkar, P. A.; Stupp, S. I. J. Am. Chem. Soc. 2005, 127, 7992.
    [114] Maillard, D.; Prud’homme, R. E. Macromolecules 2006, 39, 4272.
    [115] Maillard, D.; Prud’homme, R. E. Macromolecules 2008, 41, 1705.
    [116] Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; He, T.; Chien, L. C.; Harris, F. W.; Lotz, B. Macromolecules 1999, 32, 524.
    [117] Li, C. Y.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann, I. K.; Harris, F. W. Phys Rev Lett 1999, 83, 4558.
    [118] Li, C. Y.; Cheng, S. Z. D.; Weng, X.; Ge, J. J.; Bai, F.; Zhang, J. Z. Calhoun, B. H.; Harris, F. W.; Chien, L. C.; Lotz, B. J Am Chem Soc 2001, 123, 2462.
    [119] Singfield, K. L.; Klass, J. M.; Brown, G. R. Macromolecules 1995, 28, 8006.
    [120] Saracovan, I.; Cox, J. K.; Revol, J. F.; Manley, R. S. J.; Brown, G. R. Macromolecules 1999, 32, 717.
    [121] Guha, S.; Drew, M. G. B.; Banerjee, A. Small 2008, 4, 1993.
    [122] Green, M. M.; Gross, R. A.; Schilling, F. C.; Zero, K.; Crosby, C. Macromolecules 1988, 21, 1839.
    [123] Nolte, R. J. M. Chem Soc Rev 1994, 23, 11.
    [124] Clericuzio, M.; Alagona, G.; Ghio, G.; Salvadori, P. J Am Chem Soc 1997, 119, 1059.
    [125] Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 1998, 280, 1427.
    [126] Malashkevich, V, N.; Kammerer, R. A.; Efimov, V. P.; Schulthess, T.; Engel, J. Science 1996, 274, 761.
    [127] Sayama, K.; Tsukagoshi, S.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.; Arakawa, H. J. Phys. Chem. B 2002, 106, 1363.
    [128] Isago, H. Chem. Commun. 2003, 1864.
    [129] Adachi, K.; Chayama, K.; Watarai, H. Langmuir 2006, 22, 1630.
    [130] Miyagawa, T.; Yamamoto, M.; Muraki, R.; Onouchi, H.; Yashima, E. J. Am. Chem. Soc. 2007, 129, 3676.
    [131] Spector, M. S.; Selinger, J. V.; Singh, A.; Rodriguez, J. M.; Price, R. R.; Schnur, J. M. Langmuir 1998, 14, 3493.
    [132] Selinger, J. V.; Spector, M. S.; Schnur, J. M. J. Phys. Chem. B 2001, 105, 7157
    [133] Tanaka, J. Bull. Chem. Soc. Jap., 1963, 36, 833.
    [134] Harada, N.; Nakanishi, K. Acc. Chem. Res. 1972, 5, 257.
    [135] Harada, N.; Nakanishi, K. J. Am. Chem. Soc. 1968, 90, 7351.
    [136] Cui, H. Muraoka, T.; Cheetham, A. G. S.; Stupp, I. Nano Lett. 2009, 9, 945.
    [137] Nyrkova, I. A.; Semenov, A. N.; Aggeli, A.; Boden, N. Eur. Phys. J. B, 2000, 17, 481.
    [138] Aggeli, A.; Nyrkova, I. A.; Bell, M.; Harding, R.; Carrick, L.; McLeish, T. C. B.; Semenov, A. N.; Boden, N. P. Natl. Acad. Sci. USA, 2001, 98, 11857.
    [139] Oda, R.; Huc, I.; Schmutz, M.; Candau, S. J.; MacKintosh, F. C. Nature 1999, 399, 566.
    [140] Brizard, A.; Aime, C.; Labrot, T.; Huc, I.; Berthier, D.; Artzner, F.; Desbat, B.; Oda, R. J. Am. Chem. Soc. 2007, 129, 3754.
    [141] Cui, H.; Muraoka, T.; Cheetham, A. G.; Stupp, S. I. Nano Lett. 2009, 9, 945.
    [142] Pashuck, E. T.; Stupp, S. I. J. Am. Chem. Soc. 2010, 132, 8819.
    [143] Ziserman, L.; Lee, H.-Y.; Raghavan, S. R.; Mor, A.; Danino, D. J. Am. Chem. Soc. 2011, 133, 2511.
    [144] Langeveld-Voss, B. M. W.; Waterval, R. J. M.; Janssen, R. A. J.; Meijer, E. W. Macromolecules 1999, 32, 227.
    [145] Gestel, J.; Palmans, A. R. A.; Titulaer, B.; Vekemans, J. A. J. M.; Meijer, E. W. J. Am. Chem. Soc. 2005, 127, 5490.
    [146] Jin, W.; Fukushima, T.; Niki, M.; Kosaka, A.; Ishii, N.; Aida, T. P. Natl. Acad. Sci. USA 2005, 102, 10801.
    [147] Toyofuku, K.; Alam, Md. A.; Tsuda, A.; Fujita, N.; Sakamoto, S.; Yamaguchi, K.; Aida, T. Angew. Chem. Int. Ed. 2007, 46, 6476.
    [148] Lohr, A.; Wurthner, F. Angew. Chem. Int. Ed. 2008, 47, 1232.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE