簡易檢索 / 詳目顯示

研究生: 李懿倫
LI, YI-LUEN
論文名稱: 碳纖維奈米複合材料機械性質及潛變行為之研究
Study on the Mechanical Properties and Creep Behaviour of Carbon Fiber Nano-composites
指導教授: 葉銘泉
口試委員: 蔡佳霖
葉銘泉
蔡宏營
葉維磬
江金龍
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 243
中文關鍵詞: 奈米碳管碳纖維環氧樹脂機械性質潛變行為
外文關鍵詞: Carbon Nanotubs, Carbon Fiber, Epoxy Resin, Mechanical Property, Creep Behavior
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    由於奈米碳管具有質量輕、導電性、高熱傳導度及熱穩定性等特殊物理特性故廣範的應用在航空、航太、電磁波遮蔽(EMI)材料及靜電釋放材料(ESD)等上。本研究首先利用超音波震盪方式將表面改質後之奈米碳管均勻分散於環氧樹脂基材,並將此高分子基材與碳纖維製備成奈米高分子預浸材積層板(Nano-prepreg Laminates),以供後續研究所需之實驗與測試使用。
    本研究探討不同積層板製程包括疊層板預材製作方式、熱壓時間、熱壓程序及後硬化溫度與時間等對其積層板[(±45) 8]機械強度(抗拉、抗彎、奈衝擊強度)之影響,以歸結出較佳之製程方法與條件。隨後探討添加不同比例的奈米碳管對積層板[016], [(±45)8]機械性質之影響,並觀察在不同溫、濕度環境下材料之強度,再者利用SEM觀察奈米積層板之破壞面,討論材料的破壞機制。結果顯示積層板之機械強度隨著奈米碳管含量增加而提升。另外對碳纖維熱固性複材在不同應力、不同溫度、不同濕度、不同奈米碳管含量、不同纖維角度、不後硬化溫度及時間與潛變循環測試等不同條件下執行一系列之潛變測試,並對測試結果所得之潛變行為做一詳盡比較與分析,可發現應力、溫度及濕度對其潛變行為亦有非線性之加速作用。再者,嘗試以Findley Equation 及Larson-Miller參數式建立最佳化之潛變數學模式,對長時間潛變行為分析能提供具參考價值之依據,俾利據以探討複合材料長期安全性質。


    Abstract

    The surface modification of carbon nanotubes (CNTs) has been recently observed to influence the distribution of CNTs in epoxy resin and the mechanical properties and electrical conductivities of these CNTs. Accordingly, the treatment of CNTs to with organic acids to oxidize them generates functional groups on the surface of CNTs. This investigation studies the consequent enhancement of the mechanical properties and electrical conductivities of CNTs. The influence of adding various proportions of CNTs to the epoxy resin on the mechanical properties and electrical conductivities of the composites thus formed is investigated, and the strength of the material is tested at different temperatures.
    The test results also indicate that mechanical strength and electrical conductivity increase with the amount of CNTs added to the composites. Different coefficients of expansion of the matrix, fiber and CNTs, are such that overexpansion of the matrix at high temperature results in cracking in it. An SEM image of the fracture surface reveals debonding and the pulling out of longitudinal fibers because of poor interfacial bonding between fiber and matrix, which reduce overall strength.
    Moreover, the creep behaviors of carbon fiber (CF) /epoxy resin thermosetting composites and CNTs/CF/ epoxy resin composites were tested and analyzed at different stresses, orientations of fiber, temperatures and humidities. The creep exhibits only two stages- primary creep and steady-state creep. The effects of creep stress, creep time, and humidity on the creep of composites that contain various proportion of CNTs were investigated at various temperatures.
    Additionally, increasing the number of cycles in cyclic creep tests at room temperature resulted in a decrease in creep strain even at a high temperature of 55℃. Possible room temperature creep mechanisms have been proposed and discussed. With increasing number of creep tests, the creep strain decreased due to strain hardening which occurred during creep. Creep strain is believed to increase with applied stress, creep time, humidity, temperature and degree of the angle θ between the orientation of fiber and the direction of the applied stress.
    Furthermore, the decrease of creep strain of CF/epoxy resin composites performed aging pretreatment in a constant temperature and humidity chamber for different long-term days prior to creep testing was also investigated.
    Finally, the test results of creep strain of CF/epoxy resin composites and CNTs/CF/epoxy resin composites tested under various conditions can be smoothly fitted by the fitting curves of Findley power law. And Larson-Miller equation can be adopted to precisely predict the low-temperature-long-term creep behavior by the high-temperature-short-
    term creep behavior.

    目錄 第一章 前言 1 第二章 研究動機與內容 4 2.1研究動機 4 2.2研究內容 6 2.2.1不同預浸材製程處理在機械強度上之影響 6 2.2.2後硬化處理在機械強度上之影響 6 2-2.3改質與未改質及不同奈米碳管含量之碳纖維複材在機械強度及潛變行為上之影響 7 第三章 理論基楚與文獻回顧 10 3-1複合材料 10 3-2 碳奈米管 10 3-3 碳奈米管改質 13 3-4奈米複合材料 13 3-5 熱塑性樹脂 20 3-6 熱固性樹脂 21 3-7熱固性環氧樹脂及其硬化反應機制 21 3-8 奈米碳管複合材料之機械性質 24 3-9 預浸材複合材料疲勞破壞機制 27 3-10 奈米碳管之製備及各項性質之量測 28 3-11 環境因素對複合材料機械性質之影響 30 3-12.1 複合材料潛變行為 33 3-12.2 影響複合材料潛變因素 35 3-12.3 複合材料各種潛變數學模式 37 第四章 實驗內容及程序 44 4.1實驗材料與試劑 44 4-2 實驗儀器及設備 45 4-2.1加工設備 45 4-2.2測試儀器 53 4-3各類奈米及非奈米複合材料積層板之製備 59 4-3.1 奈米碳管之改質方式 59 4-3.2預混材之製作 59 4-3.3熱壓成型法 61 4-3.4後硬化法 62 4-4實驗流程及其測試條件 66 4-4.1實驗整體流程 66 4-4.2各項實驗測試環境條件及流程 69 4-4.3實驗測試方法 80 4-4.4試片使用數量 82 第五章 結果與討論 94 5-1改質與未改質奈米碳管在積層板內部分散性之比較與分析 94 5-2分段升溫升壓與直接升溫升壓熱壓成型積層板之比較分析 98 5-3吸濕率分析 100 5-4室溫(25℃)下改質與未改質奈米碳管複材積層板之機械強度測試 102 5-5 SEM型態學分析 107 5-5.1經不同環境條件下積層板受抗拉測試之破壞型態學分析 107 5-5.2經不同環境條件下積層板受抗彎測試之破壞型態學分析 110 5-5.3經不同環境條件下積層板受耐衝擊測試之破壞型態學分析 113 5-6不同預浸材製程處理(塗佈法與含浸法)在奈米碳管複材積層板機械強度上之影響 116 5-7後硬化處理在機械強度上之影響 123 5-7.1後硬化溫度在機械強度上之影響 123 5-7.2後硬化時間在機械強度上之影響 135 5-8奈米碳管含量與纖維排列方向及各種測試環境條件對奈米碳管複材潛變行為上之影響 145 5-8.1不同負載條件及纖維排列角度對潛變行為之影響 145 5-8.2不同測試溫度環境對潛變行為之影響 150 5-8.3不同測試濕度環境對潛變行為之影響 153 5-8.4不同奈米碳管含量對奈米碳管熱固性複材潛變行為之影響 157 5-9 卸負載循環潛變測試對碳纖維/環氧樹酯熱固性複材單一試片潛變行為之影響 163 5-10 後硬化處理在潛變行為上之影響 167 5-11 濕度預處理在潛變行為上之影響 172 5-12 Findley Equation潛變數學模式曲線與實際潛變行之吻合性 176 5-12.1探討對碳纖維/環氧樹酯熱固性積層板[(±45)8]在不同荷重條件下之潛變測試結果嘗試以Findley Equation數學模式所建立之潛變近似曲線與實際潛變行為的吻合性 177 5-12.2探討對碳纖維/環氧樹酯熱固性積層板[(±45)8]在不同溫度條件下之潛變測試結果嘗試建立Findley Equation數學模式所建立之潛變近似曲線與實際潛變行為的吻合性 180 5-12.3探討對碳纖維/環氧樹酯熱固性積層板[(±45)8]在不同濕度條件下之潛變測試結果嘗試以Findley Equation數學模式所建立之潛變近似曲線與實際潛變行為的吻合性 183 5-12.4探討對碳纖維/環氧樹酯熱固性積層板在不同纖維排列角度條件下之潛變測試結果嘗試以Findley Equation數學模式所建立之潛變近似曲線與實際潛變行為的吻合性 185 5-12.5探討對奈米碳管/碳纖維/環氧樹酯熱固性積層板[(±45)8]在不同奈米碳管含量條件下之潛變測試結果嘗試以Findley Equation數學模式所建立之潛變近似曲線與實際潛變行為的吻合性 187 5-13對碳纖維/環氧樹酯熱固性積層板[(±45)8]利用Larson-Miller參數式所建立之潛變數學模式探討以下不同條件潛變預測之吻合性 189 5-13.2 對碳纖維/環氧樹酯熱固性積層板[(±45)8]利用Larson-Miller參數式所建立之潛變數學模式探討以高荷重30MPa短時間預測低荷重20MPa及10MPa等長時間之潛變行為之吻合性 210 5-13.3 對碳纖維/環氧樹酯熱固性積層板利用Larson-Miller參數式所建立之潛變數學模式探討以大角度纖維方向短時間預測小角度纖維方向長時間潛變行為之吻合性 214 第六章 結論與後續研究建議 219 6-1 結論 219 6-2 後續研究建議 224 參考文獻 226 附錄 239

    參考文獻
    1. S. Iijima and T. Ichlhashi, “Single-shell carbon nanotubes of 1-nm
    diameter,” Nature, 363, 603–5. (1993)
    2. Z. F. Ren, Z. P. Huang, J. W. Xu, D. Z. Wang, J. G. Wen and J. H.
    Wang, “ Growth of a single freestanding multiwall carbon nanotube
    on each nanonickel dot,” Applied Physics Letters, 75(8), 1086–8.
    (1999)
    3. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Fohmund, D. T.
    Colbert and K. A. Smith, “Gas-phase catalytic growth of
    single-walled carbon nanotubes from carbon monoxide,” Chemical
    Physics Letters, 313(1-2), 91–7. (1999)
    4. F. Gojny and K. Schulte, “Functionalisation effect on the thermo-
    mechanical behaviour of multi-wall carbon nanotube/epoxy-
    composites,” Composites Science and Technology, Vol.64, 2303-2308.
    (2004)
    5. E. Dujardin﹐T. W. Ebbesen﹐A. Krishnan﹐P. N. Yianilos and M. M.
    J. Treacy, “Young’s modulus of single-walled nanootubes,” Physical
    Review B﹐58﹐14013 (1998)
    6. M. M. J. Treacy﹐T. W. Ebbesen and J. M. Gibson, “Exceptionally high
    Young’s modulus observed for individual carbon nanotube,” Nature,
    381,678, (1996)
    7.H. Xie, B. Liu, Z. Yuan, J. Shen and R. Cheng, “Cure kinetics of
    nanotube/tetrafunctional epoxy nanocomposites by isothermal
    differential scanning calorimetry,” Journal of Polymer Science, Part B:
    Polymer Physics, Vol.42, 3701-3712. (2004)
    8.J. Kwon and H. Kim, “Comparison of the properties of waterborne
    polyurethane/multiwalled carbon nanotube and acid-treated
    multiwalled carbon nanotube composites prepared by in situ
    polymerization,” Journal of Polymer Science, Part A: Polymer
    Chemistry, Vol.43, 3973-3985. (2005)
    9.T. Ramanathan, H. Liu and L.C. Brinson, “Functionalized SWNT/
    polymer nanocomposites for dramatic property improvement,”Journal of Polymer Science, Part B: Polymer Physics, Vol.43,2269-2279.
    (2005)
    10. X. Gong, J. Liu, S. Baskaran, R.D. Voise and J.S. Young, “Surfactant
    -Assisted Processing of Carbon Nanotube/Polymer Composites,”
    Chemistry of Materials, Vol.12, 1049-1052. (2000)
    11. R. Guzman D.V, A. Miravete, J. Cuartero, A Chiminelli and N.
    Tolosana, “Mechanical properties of SWNT/epoxy composites using
    two different curing cycles,” Composites Part B: engineering, Vol.37,
    273-277. (2006)
    12.馬振基,江金龍,李宗銘,關旭強,吳漢朗,陳韋任,蘇訓右,
    許嘉雯,黃元利,阮韶銘,王家樺,廖玉梅,羅國鋒與張力仁,
    “奈米材料科技原理與應用”,2-2~2-3,全華科技圖書股份有限公
    司,2004
    13. M. Koizumi, “Advanced Technology of Nano-materials”, CMC,
    (2001)
    14. Kajiwara Meisetsu, “ Development and Application of Inorganic-
    organic Hybrid Material”, CMC, (2001)(日文)
    15.日本化學會,“ 無機有機Nano 複合物質”, 學會出版Center, (1999)
    16.馬振基,關旭強,“溶膠-凝膠,有機、無機混成高分子材料發展
    趨勢”,化工資訊,1992 年 12 月
    17.作花濟夫,“Sol-Gel 法之科學”,Agune 承風社,(1988)
    18.H. G. Florian, W. H. G. Malte, F. Bodo and S. Karl, “Influence of
    different carbon nanotubes on the mechanical properties of epoxy
    matrix composites–A comparative study,” Composites Science and
    Technology, 65, 2300–2313. (2005)
    19. K. T. Lau, M. Lu and K. Liao, “Improved mechanical properties of
    coiled carbon nanotubesreinforced epoxy nanocomposites,”
    Composites: Part A, 37, 1837–1840. (2006)
    20. Y. S. Song and J. R. Youn, “Influence of dispersion states of carbon
    nanotubes on physical properties of epoxy nanocomposites,” Carbon,
    43, 1378–1385. (2005)
    21. K. T. Lau, S. Q. Shi and H. M. Cheng, “Micro-mechanical properties
    and morphological observation on fracture surfaces of carbon
    nanotube composites pre-treated at different temperatures,”
    Composites Science and Technology, 63, 1161–1164. (2003)
    22. A. Heinzel, F. Mahlendorf, O. Niemzig and C. Kreuz, “Injection
    moulded low cost bipolar plates for PEM fuel cells,” Journal of
    Power Sources, Vol.131, 35-40, (2004)
    23. J. Huang, D. G. Baird and J. E. McGrath, “Development of fuel cell
    bipolar plates from graphite filled wet-lay thermoplastic composite
    materials,” Journal of Power Sources, Vol.131, 35-40 (2004)
    24. M. K. Bisaria, “Injection moldable conductive aromatic thermoplastic
    liquid crystalline polymer compositions,” WO 00/44005, (2001)
    25. R. C. Emanulson, “Separator Plate for electrochemical cells,”
    US4301222, (1981)
    26. Plastics-Technology,“http://www.plastics-technology.com/,” website,
    (2010)
    27. R. Blunk, M. H. A. Elhamid, D. Lisi and Y. Mikhail, “Polymeric
    composite bipolar plates for vehicle applications” Journal of Power
    Sources, Vol.156, 1511–1571, (2006)
    28. C. Y. Yen, Shu-Hang Liao, Yu-Feng Lin, Chih-Hung Hung, Yao-Yu
    Lin, Chen-Chi M. Ma “Preparation and properties of high
    performance nanocomposite bipolar plate for full cell,” Journal of
    Power Sources, Vol.162, 309-315, (2006)
    29. M. Moniruzzaman, A. Sahin and K. I. Winey, “Improved Mechanical Strength and Electrical Conductivity of Organogels Containing Carbon Nanotubes,”Carbon,Vol. 47, (2009), pp.645-650.
    30.T. Ogasawara, Y. Ishida and T. Kasai, “Mechanical Properties of Carbon Fiber/Fullerene-Dispersed Epoxy Composites,” Composites Science and Technology, Vol. 69, (2009), pp.2002-2007.
    31. R. B. Mathur, S. Chatterjee and B. P. Singh, “Growth of Carbon Nanotubes on Carbon Fiber Substrates to Produce Hybrid/Phenolic Composites with Improved Mechanical Properties,” Composites Science and Technology, Vol. 68, (2008), pp.1608-1615.
    32. http://zhidao.baidu.com/question/8238250.html
    33. http://www.che.yuntech.edu.tw/teacher/lincw/materials/chaptr%203.pdf
    34.A. Allaoui, S. Bai, H. M. Cheng and J. B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Composites Science and Technology ,Vol. 62,(2002), pp.1993~1998.
    35.Q. Li, M. Zaiser and V. Koutsos, “Carbon nanotube/epoxy resin composites using a block copolymer as a dispersing agent, ” Phys. Stat. Sol. (a) 201 (2004) R89.
    36. D. Qian, E. C. Dickey, R. Andrews and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites ,”Applied Physics Letters,Vol.76,(2000), pp.2868–2870.
    37. S. L. Ruan, P. Gao and X.G. Yang, “Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes,” Polymer, Vol. 44, (2003),pp.5643–54.
    38. J. M. Park, D. S. Kim, J. R. Lee and T. W. Kim, “Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electro-micromechanical technique,” Materials Science and Engineering C, Vol. 23, (2003), pp. 971–975.
    39. J. M. Park, J. W. Kim and D. J. Yoon, J. Colloid Interface Science Vol. 247, (2002), pp.231.
    40. R. Andrews, M. C. Weisenberger, “Carbon nanotube polymer composites,” Current Opinion in Solid State and Materials Science, Vol. 8, (2004), pp.31–37.
    41. M. K. Yeh, N. H. Tai and J. H. Liu, “Mechanical behavior of phenolic
    -based composites reinforced with multi-walled carbon nanotubes,”
    Carbon, Vol.44, 1-9. (2006)
    42. M. A. Lopez-Manchado, J. Biagiotti, L. Valentini, J. M. Kenny,
    “ Dynamic mechanical and Raman spectroscopy studies on
    interaction between single-walled carbon nanotubes and natural
    rubber,” Journal of Applied Polymer Science, Vol.92, 3394-3400.
    (2004)
    43. A. Fakhru’l-Razi, M. A. Atieh, N Girun, T. G. Chuah, M. El-Sadig,
    D.R. A. Biak, “Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber,” Composite Structures, Vol.75, 496-500. (2006)
    44. M. D. Frogley, D. Ravich, H. D. Wagner, “Mechanical properties of
    carbon nanoparticle-reinforced elastomers,” Composites Science and
    Technology, Vol.63, 1647-1654. (2003)
    45. E. Guth, “Theory of filler reinforcement,” Journal of Applied Physics,
    Vol.16, 20, (1944)
    46. J.C. Halpin, “Journal of Composite Materials,” Vol.3, 732, (1969)
    47. L. Bokobza, “Multiwall carbon nanotube elastomeric composites: A
    review,” polymer, article in press, (2007)
    48. D. S. Saunders and G. Clark, “Fatigue Damage in Composite
    Laminates,” Materials Forum, Vol. 17, (1993), pp.309-331.
    49. R. D. Jamison, K. Schulte, K. L. Reifsnider and W. W. Stinchcomb
    ,“Characterization and Analysis of Damage Mechanisms in Tension-
    Tension Fatigue of Graphite/Epoxy Laminates,” Effects of Defects in Composite Materials, ASTM STP 836, American Society for Testing
    and Materials, (1984), pp.21-55.
    50. K. L. Reifsnider, E. G. Henneke, W. W. Stinchcomb and J. C. Duke, “Damage Mechanics and NDE of Composite Laminates,” Mechanics of Composite Materials, Recent Advance, Z. Hashin and C. T. Herakovich, eds., Pergamon Press, New York, (1983), pp.399-420.
    51. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy and
    J. Vazquez, “Cobalt-catalyzed growth of carbon nanotubes with
    single-atomic-layer walls,” Nature, 363, 605–7. (1993)
    52. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. de la Chapelle
    and S. Lefrant, “Large-scale production of single-walled carbon
    nanotubes by the electric-arc technique,” Nature, 388, 756–8. (1997)
    53. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush and M. P.
    Siegal, “ Synthesis of large arrays of well-aligned carbon nanotubes
    on glass,” Science, 282, 1105–7. (1998)
    54. M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, ”Exceptionally
    high Young's modulus observed for individual carbon nanotubes,”
    Nature 381, 678–680. (1996)
    55. E. W. Wong, P. E. Sheehan and C. M. Lieber, “Nanobeam
    mechanics: elasticity, strength, and toughness of nanorods and
    nanotubes,”Science, 277, 1971–5. (1997)
    56. D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert
    and K. A. Smith, “ Elastic strain of freely suspended single-wall
    carbon nanotube ropes,” Applied Physics Letters, 74(25), 3803–5.
    (1999)
    57. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl and R. O. Ritchie, “Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes, ” Materials Science and Engineering A, Vol. 334, (2002), pp.173-178.
    58. F. Deng, T. Ogasawara and N. Takeda, “Tensile properties at
    different temperature and observation of micro deformation of carbon
    nanotubes–poly(ether ether ketone) composites,” Composites Science
    and Technology, 67, 2959–2964. (2007)
    59. Y. K. Choi, K. I. Sugimoto, S. M. Song, Y. Gotoh, Y. Ohkoshi and
    M. Endo, “Mechanical and physical properties of epoxycomposites
    reinforced by vapor grown carbon nanofibers,” Carbon, 43, 2199–
    2208. (2005)
    60. Y. Zou, Y. Feng, L. Wang and X. Liu, “Processing and properties of
    MWNT/HDPE composites,” Carbon, 42, 271–277. (2004)
    61. J. M. F. de Paiva, S. Mayer and M. C. Rezende, “Evaluation of
    mechanical properties of four different carbon/epoxy composites used
    in aeronautical field,” Materials Research, 8, 1, 91–97. (2005)
    62. L. Du and S. C. Jana, “Hygrothermal effects on properties of highly
    conductive epoxy/graphitecomposites for applications as bipolar
    plates,” Journal of Power Sources, 182, 223–229. (2008)
    63. S. Rouquie, M. C. L. Frenot, J. Cinquin and A. M. Colombaro,
    “Thermal cycling of carbon/epoxy laminates in neutral and oxidative
    environments,” Composites Science and Technology, 65, 403–409.
    (2005)
    64. B. C. Ray, “Temperature effect during humid ageing on interfacesof
    glass and carbon fibers reinforced epoxy composites,” Journal of
    Colloid and Interface Science, 298, 111–117. (2006)
    65. O. K. Joshi, “The effect of Moisture on the Shear Properties of
    Carbon Fiber Composites.” Composites, Vol.14, 3, 196-200. (1983)
    66. J. M. Barton and D. C. L. Greenfield, “The Use of Dynamic
    Mechanical Methodes to Study the Effect of Absorbed Water on
    Temperature-Dependent Properties of an Epoxy Resin-Carbon Fiber
    Composites,” British Polymer Journal, Vol.18, 1, 51-56. (1986)
    67. C. E. Browning and J. T. Harthess, “Effect of Moisture on the
    Properties of High-Performance Structure Resins and Composites,”
    ASTM STP 546, 284-302.
    68. S. M. Bishop, “Effect of Moisture on the Notch Sensitivity of Carbon
    Fober Composites,” Vol.14, 3, 201-205. (1983)
    69. T. A. Collings, D. L. Mead and D. E. W. Stone, “The Effects of High
    Temperature Report, TR 85074 (Royal Aircraft Establishment,
    Farnborough, UK), (1985)
    70. Y. Miyano, M. Nakada and M. K. McMurray, “Influence of Stress
    Ratio on Fatigue Behavior in The Transverse Direction of
    Unidirectional CFRPS,” Journal of Composite Materials, Vol.29, 14,
    1808-1822. (1995)
    71. X. Huang, J. W. Gillespie Jr and R. F. Eduljee, “Effect of
    Temperature on The Transverse Cracking Behavior of Cross-Ply
    Composite Laminates,” Composites Part B Vol.28, 419-424. (1997)
    72. K. S. Kim, H. T. Hahn and R. B. Croman, “The Effect of Cooling
    Rate on Residual Stress in a Thermoplastic Composite,” Journal of
    Composite Technology & Research, Vol.11, 2, 47-52. (1989)
    73. A. Miyase, A. W. L. Chen, P. H. Geil and S. S. Wang, “Anelastic
    Deformation of a Thermoplastic-Matrix Fiber Composite at Elevated
    Temperature; Part II: Time-Temperature Dependent Matrix
    Behavior,”Journal of Composite Materials, Vol.27, 9, 886-907. (1993)
    74. M. Detasis, A. Pegoretti and C. Migliaresi, “ Effect of Temperature
    and Strain Rate on Interfacial Shear Stress,” Composites Science and
    Technology, Vol.53, 39-46. (1995)
    75. A. Paipetis and C. Galiotis, “A Study of the Stress Transfer
    Characteristics in Model Composites as a Function of Material Processing, Fiber Sizing and Temperature of the Environment,” Composites Science and Technology, Vol.57, 827-838. (1997)
    76. C. B. Lin, M. S. Yeh, T. H. Chuang and C. H. Koo, “Degradation
    Effects of Low Temperature and CO-60 Radiation on Carbon
    Fiber/Epoxy Composite,” Transactions of the Aeronautical and
    Astronautical Society of the Republic of China, Vol.29, 2, 153-159.
    (1997)
    77. T. A. Collings, D. L. Mead and D. E. W. Stone, “The Effects of High
    Temperature Excursions on Environmentally Exposed CFC,” RAE
    Technical Report, TR 85074 (Royal Aircraft Establishment,
    Farnborough, UK), 1985.
    78. F. U. Buehler and J. C. Seferis, “Effect of reinforcement and Solvent
    content on moisture absorption in epoxy composite materials,”
    Composites, Part A, Vol.31, 741-748. (2000)
    79. S. Birger, A. Moshonov and S. Kenig, “The Effects of Thermal and
    Hygrothermal Ageing on The Failure Mechanisms of Graphite Fabric
    Epoxy Composites Subjected to Flexural Loading,” Composite, July,
    Vol.20, 4, 341-348. (1989)
    80. S. Kellas, J. Morton and P. T. Curtis, “The Effect of Hygrothermal
    Environments upon the Tensile and Compressive Strength of
    Notched CFRP Laminates: Part I - Static Loading,” Composites, Vol.
    21, 1, 41-51.(1990)
    81. W. P. Dewilde and P. Frolkovic, “The Modeling of Moisture
    Absorption in Epoxies: Effects at the Boundaries,” Composites, Vol.
    25, 2, 119- 127. (1994)
    82. A. Stamboulis, C. A. Baillie and T. Peijs, “Effects of environmental
    conditions on mechanical and physical properties of flax fibers,”
    Composites, Part B, Vol.32, 1105-1115.( 2001)
    83. C. E. Browning, C. E. Husman and J. M. Whitney, “Moisture Effects
    in Epoxy Matrix Composites,” AFML-TR-77-41, (1987)
    84. R. T. Potter and D. Purslow, “The Environmental Degradation of
    Notched CFRP in Compression,” Composites, Vol.14, 3, 206-225.
    (1983)
    85. A. J. Barker and V. Balasundaram, “Compression Testing of Carbon
    Fibre Reinforced Plastics Exposed to Humid Environ- ments,”
    Composites, Vol.18, 3, 217-226. (1987)
    86. E. M. Woo, “Moisture Temperature Equivalency in Creep Analysis
    of a Heterogeneous-Matrix Carbon Fibre/Epoxy Composite,”
    Composite, (1993)
    87. R. Selzer and K. Friedrich, “Mechanical Properties and Failure
    Behaviour of Carbon Fibre Reinforced Polymer Composites Under
    the Influence of Moisture,” Composite, Part A 28A, 595-604. (1997)
    88. C. Soutis and D. Turkmen, “Moisture and Temperature Effects of the
    Compressive Failure of CFRP Unidirectional Laminates,” Journal of
    Composite Materials, Vol.31, 8, 832-849. (1997)
    89. Mohan, R. and Adams, D. F.,”Nonlinear Viscoelastic Characterization of Unidirectional Composites in Hygrothermal Environments”, U of Wyoming Report, UWME-DR-301-107-1, 1983.
    90. Freynik, H. S. and Dittbenner, G. R.,“Strain Gage Stability Measurements for Years at 75℃ in Air”, Experimental Mechanics, 16,155-160,1970.
    91. Nichols, M. E., Wang, S. S. and Geil, P. H.,”Creep and Physical Aging in a Polyamideimide Carbon Fiber Composite”, J. Macromol. Sci.-Phys., B29(4), 303-336,1990.
    92. Gibson, R. F., Hwang, S. J. and Sheppard, C.H.,”Characterization of Creep in Polymer Composites by the Use of Frequency-Time Transformations”, J. Comp. Mat.,24,441-453,1990.
    93. Yen, S. C. and Williamson, F. L.,”Accelerated Characterization of Creep Respons of an Off-axis Composite Material”, Composites Science and Technology, 38, 103-118, 1990.
    94. Zhang, S. Y. and Xiang, X. Y., “Creep Characterization of a Fiber Reinforced Plastic Material”, J. Reinforced Plastics and Composites, 11, 1187-1195,1992.
    95. Chen, C. H. and Chen, Y.C., “The Creep Behavior of Solid Filled Rubber Composites”, J. Polymer Research, 1(1), 75-83,1994.
    96. Woo, E. M., “Moisture-Temperature Equivalency in Creep Analysis of a Heterogeneous-Matrix Carbon Fiber/Epoxy Composite”, Composites, 25(6),425-430,1994.
    97. Brison, H. F. and Dillard, D.A., “The Prediction of Long-Term Viscoelastic Properties of Fiber Reinforced Plastics”,ICCM-IV, Tokyo, 795-801,1982.
    98. Flaggs, D. L. and Crossman, F. W., “Analysis of Viscoelastic Response of Composite Laminates During Hygrothermal Exposure”, J. Comp. Mat., 15, 21-24,1981.
    99. Sun, C. T. and Yoon, K.J., “Characterization of Elastic-Plastic Behavior of AS4/PEEK Thermoplastic Composites”, J. Comp. Mat., 15, 1277-1296, 1991.
    100. Sudarsana R. Challa and Progelhof R. C.., “A Study of Creep and Creep Rupture of Polycarbonate”, Polymer Engineering and Science, Vo1. 35, No. 6, 546~554, 1995.
    101. Vicic, J. C. Cain, D and Maligas, M., “Estimating Elastomer Failure Life Using Environmental Tests”, Elastomerics,1992.
    102.Findley, W. N., “Creep Characterization of Plastic”, Proc. Symposium on Plastic. American Society for Testings and Materials, Philadelphia, PA,1944.
    103. Findley, W. N., and Lai, J.S.Y., “A Modified Superposition Principle Applied to Creep of Nonlinear Viscoelastic Material under Abrupt Chang in State of Combined Stress”, Transactions of the Society Rheology, 1967.
    104. Leaderman, H., Elastic and Creep Properties of Filamentous Materials and Other High Polymers, Textile Foundation, Washington, D. C., 1943.
    105. 李育德, 顏文義, 莊祖煌, 聚合物物性, 高立圖書, 台北, 1993.
    106. 黃振賢, 金屬熱處理, 文京圖書, 台北, 1995.
    107. 王國書, “奈米碳管/高分子預浸材積層板複合材料之機械與電性質研究,” 國立清華大學動力機械工程學系碩士論文, (2007).
    108. "Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials," ASTM D3039/D3039M-08, Annual Book of ASTM Standards, 2008.
    109. “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” ASTM D790-10, (2010).
    110. “Standard Test Method for Determining the Pendulum Impact Resistance of Notched Specimens of Plastics ,” ASTM D256, (1996), pp1-18.
    111. “Standard Test Method for Water Absorption of Plastics,” ASTM D570-98, (2005).
    112. "Standard Test Methods for Tensile, Compressive, and Flexural Creep and Creep-Rupture of Plastics,” ASTM D2990-90,(2008).
    113. Y. Breton, G. D. Esarmot, J. P. Salvetat, S. Delpeux, C. Sinturel, F. B. eguin and S. Bonnamy “Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology” Carbon 42 (2004), pp.1027–1030.
    114. H. S. Hedia, L. Allie, S. Ganguli and H. Aglan “The influence of nanoadhesives on the tensile properties and Mode-Ι fracture toughness of bonded joints” Engineering Fracture Mechanics 73 (2006), pp.1826–1832.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE