研究生: |
吳曉鈞 Wu, Hsiao-Chun |
---|---|
論文名稱: |
Analysis of THSD7A functional domain expressed by baculoviral system 分析以昆蟲病毒系統表達之凝血酶敏感蛋白區域包含7A的功能性片段 |
指導教授: |
莊永仁
Chuang, Yung-Jen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | 凝血酶敏感蛋白區域包含 7A 、桿狀病毒-昆蟲細胞表現系統 、人類臍帶靜脈內皮細胞 、細胞遷移 |
外文關鍵詞: | THSD7A, baculovirus-insect cell expression system, HUVEC, cell migration |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
內皮細胞的方向性遷移對血管及其形態的發育扮演重要的角色。它受到許多引導因子嚴密的調控。先前,我們發現一個新穎蛋白: 凝血酶敏感蛋白區域包含 7A (Thrombospondin Type-1 Domain Containing 7A; THSD7A) 可能參與上述過程,但是其結構與功能的關聯機制尚未被深入了解。利用生物資訊分析的結果顯示,THSD7A被預測為一個包含十一個凝血酶敏感蛋白重複區域 (TSR) 以及一個RGD序列的穿膜醣蛋白。這些特徵暗示THSD7A可能參與細胞的移動或細胞與胞外基質的交互作用。在我們先前的研究中指出,當斑馬魚體內THSD7A的表現減少時,會導致體節間血管 (ISV) 不正常的分歧與生長延遲。另一方面,我們觀察到在血管前端的內皮尖端細胞 (endothelial tip cell) 上生成過多的絲狀偽足 (filopodia),其形成被視為調控遷移方向的關鍵因素。同時,我們也發現THSD7A的轉錄產物會表現在斑馬魚的神經系統中。基於上述的發現,我們假設THSD7A可能是一個從神經組織分泌出的血管引導蛋白,並且會在血管發育過程中扮演外源性負向調控內皮尖端細胞方向性遷移的因子。本篇論文研究的主要目的是利用活體外的分析方式找出THSD7A的功能性片段。首先,為了釐清人類THSD7A的轉譯後修飾與其同源異構體 (isoform),我們藉由哺乳類細胞株表現其蛋白。我們亦利用桿狀病毒-昆蟲細胞表現系統成功建構THSD7A截切片段TF2之載體並表現蛋白。最後,我們利用穿透式細胞遷移試驗 (transwell migration assay) 與管柱生成試驗 (tube-like formation assay) 兩種與血管發育相關的活體外實驗,測試TF2的功能。結果顯示,THSD7A是一個會被分泌到細胞外的醣蛋白。TF2-His融合蛋白可以成功地藉由培養在Express 5培養基的High5 昆蟲細胞表現並以適當的條件純化之。然而,我們發現 TF2不會調控人類臍帶靜脈內皮細胞的遷移與管柱生成能力。這個結果暗示我們THSD7A的功能性片段可能不是座落在TF2上。
Directed migration of endothelial cell (EC) plays a critical role in vascular growth and patterning processes. It is tightly regulated by various guidance cues and molecules. Previously, we identified a novel protein, Thrombospondin Type-1 Domain Containing 7A (THSD7A), which may involved in this process, but not much is known regarding its structural-functional mechanism. By bioinformatic analysis, THSD7A was predicted as a membrane glycoprotein which contains eleven thrombospondin-type-1 repeats (TSR) and one RGD motif. These characters imply THSD7A may be involved in cell migration and cell-to-ECM interactions. In our previous study, we found out that the down-regulation of zTHSD7A (THSD7A homolog in zebrafish) gene expression resulted in abnormal branching and stalled of intersegmental vessel (ISV). On the other hand, the endothelial tip cell at the leading front of growing vessel showed excessive filopodia formation which was thought to guide its direction. We also discovered that Thsd7a transcript was expressed in zebrafish nervous system. Based on these findings, we hypothesize that THSD7A may be a vessel guidance protein secreted by neural tissue and act as an exogenous negative regulator of the directed migration of endothelial tip cell during vascular growth. The specific aim of this thesis study is focusing on analyzing the functional domain of THSD7A in vitro. First, recombinant full-length human THSD7A was expressed by mammalian cells to reveal the isoforms of THSD7A and modification. Baculoviral vectors containing truncated fragment 2 (TF2) of THSD7A was then constructed and used to express the target protein region by insect cells system. The resulting TF2 were then tested with two in vitro angiogenic assays, which are the transwell migration assay and tube-like formation assay. These results demonstrated that there was a secreted form of THSD7A which was glycosylated. His-tagged TF2 (TF2-His) can indeed be expressed by High5 insect cells in Express 5 medium successfully, and an optimal purification procedure was established. However, we found TF2 has no activity on regulating the migration and tube-formation of HUVEC. This suggests that the functional domain of THSD7A may not locate within the TF2 region.
1. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57-70 (2000).
2. Folkman, J. Endogenous angiogenesis inhibitors. APMIS 112, 496-507 (2004).
3. Nyberg, P., Xie, L. & Kalluri, R. Endogenous inhibitors of angiogenesis. Cancer Res 65, 3967-3979 (2005).
4. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932-936 (2005).
5. Folkman, J. Endogenous inhibitors of angiogenesis. Harvey Lect 92, 65-82 (1996).
6. Wong, C.G., Rich, K.A., Liaw, L.H., Hsu, H.T. & Berns, M.W. Intravitreal VEGF and bFGF produce florid retinal neovascularization and hemorrhage in the rabbit. Curr Eye Res 22, 140-147 (2001).
7. Ferrara, N., Mass, R.D., Campa, C. & Kim, R. Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu Rev Med 58, 491-504 (2007).
8. Ferrara, N., Gerber, H.P. & LeCouter, J. The biology of VEGF and its receptors. Nat Med 9, 669-676 (2003).
9. Yancopoulos, G.D., et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242-248 (2000).
10. Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2, 795-803 (2002).
11. Folkman, J. & Kalluri, R. Cancer without disease. Nature 427, 787 (2004).
12. Matsumoto, T. & Claesson-Welsh, L. VEGF receptor signal transduction. Sci STKE 2001, re21 (2001).
13. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843-845 (1992).
14. Dameron, K.M., Volpert, O.V., Tainsky, M.A. & Bouck, N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582-1584 (1994).
15. Guo, N., Krutzsch, H.C., Inman, J.K. & Roberts, D.D. Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res 57, 1735-1742 (1997).
16. Hsu, S.C., et al. Inhibition of angiogenesis in human glioblastomas by chromosome 10 induction of thrombospondin-1. Cancer Res 56, 5684-5691 (1996).
17. Nor, J.E., et al. Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J Vasc Res 37, 209-218 (2000).
18. Jimenez, B., et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6, 41-48 (2000).
19. Wang, Y., Wang, S. & Sheibani, N. Enhanced proangiogenic signaling in thrombospondin-1-deficient retinal endothelial cells. Microvasc Res 71, 143-151 (2006).
20. Good, D.J., et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A 87, 6624-6628 (1990).
21. Tolsma, S.S., et al. Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 122, 497-511 (1993).
22. Gerhardt, H., et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161, 1163-1177 (2003).
23. Gerhardt, H., et al. Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev Dyn 231, 503-509 (2004).
24. Suchting, S., et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A 104, 3225-3230 (2007).
25. Karagiannis, E.D. & Popel, A.S. Anti-angiogenic peptides identified in thrombospondin type I domains. Biochem Biophys Res Commun 359, 63-69 (2007).
26. Huwiler, K.G., Vestling, M.M., Annis, D.S. & Mosher, D.F. Biophysical characterization, including disulfide bond assignments, of the anti-angiogenic type 1 domains of human thrombospondin-1. Biochemistry 41, 14329-14339 (2002).
27. Sharghi-Namini, S., et al. The first but not the second thrombospondin type 1 repeat of ADAMTS5 functions as an angiogenesis inhibitor. Biochem Biophys Res Commun 371, 215-219 (2008).
28. Silverstein, R.L. & Febbraio, M. CD36-TSP-HRGP interactions in the regulation of angiogenesis. Curr Pharm Des 13, 3559-3567 (2007).
29. Simantov, R. & Silverstein, R.L. CD36: a critical anti-angiogenic receptor. Front Biosci 8, s874-882 (2003).
30. Adams, J.C. & Tucker, R.P. The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development. Dev Dyn 218, 280-299 (2000).
31. Bork, P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 327, 125-130 (1993).
32. Karagiannis, E.D. & Popel, A.S. Peptides derived from type I thrombospondin repeat-containing proteins of the CCN family inhibit proliferation and migration of endothelial cells. Int J Biochem Cell Biol 39, 2314-2323 (2007).
33. Silverstein, R.L. The face of TSR revealed: an extracellular signaling domain is exposed. J Cell Biol 159, 203-206 (2002).
34. Ji, W.R., et al. Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. FASEB J 12, 1731-1738 (1998).
35. Yamaguchi, N., et al. Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J 18, 4414-4423 (1999).
36. Wang, C.H., et al. Thrombospondin type I domain containing 7A (THSD7A) mediates endothelial cell migration and tube formation. J Cell Physiol 222, 685-694 (2010).
37. Giancotti, F.G. Complexity and specificity of integrin signalling. Nat Cell Biol 2, E13-14 (2000).
38. Klemke, R.L., et al. Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 137, 481-492 (1997).
39. Turner, C.E. Paxillin and focal adhesion signalling. Nat Cell Biol 2, E231-236 (2000).
40. Hu, Y.L. & Chien, S. Dynamic motion of paxillin on actin filaments in living endothelial cells. Biochem Biophys Res Commun 357, 871-876 (2007).
41. Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193-200 (2005).
42. Mukouyama, Y.S., Shin, D., Britsch, S., Taniguchi, M. & Anderson, D.J. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109, 693-705 (2002).
43. Zukowska, Z., Grant, D.S. & Lee, E.W. Neuropeptide Y: a novel mechanism for ischemic angiogenesis. Trends Cardiovasc Med 13, 86-92 (2003).
44. Movafagh, S., Hobson, J.P., Spiegel, S., Kleinman, H.K. & Zukowska, Z. Neuropeptide Y induces migration, proliferation, and tube formation of endothelial cells bimodally via Y1, Y2, and Y5 receptors. FASEB J 20, 1924-1926 (2006).
45. Pratap, J., Rajamohan, G. & Dikshit, K.L. Characteristics of glycosylated streptokinase secreted from Pichia pastoris: enhanced resistance of SK to proteolysis by glycosylation. Appl Microbiol Biotechnol 53, 469-475 (2000).
46. Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. Science 291, 2364-2369 (2001).
47. Parodi, A.J. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. Biochem J 348 Pt 1, 1-13 (2000).
48. Mitra, N., Sinha, S., Ramya, T.N. & Surolia, A. N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem Sci 31, 156-163 (2006).
49. Helenius, A. & Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73, 1019-1049 (2004).
50. Lee, J., Park, J.S., Moon, J.Y., Kim, K.Y. & Moon, H.M. The influence of glycosylation on secretion, stability, and immunogenicity of recombinant HBV pre-S antigen synthesized in Saccharomyces cerevisiae. Biochem Biophys Res Commun 303, 427-432 (2003).
51. Zhao, Y.Y., et al. Functional roles of N-glycans in cell signaling and cell adhesion in cancer. Cancer Sci 99, 1304-1310 (2008).
52. Mosmann, T.R. & Williamson, A.R. Structural mutations in a mouse immunoglobulin light chain resulting in failure to be secreted. Cell 20, 283-292 (1980).
53. Dobson, C.M. Protein folding and misfolding. Nature 426, 884-890 (2003).
54. Schachner, M. & Martini, R. Glycans and the modulation of neural-recognition molecule function. Trends Neurosci 18, 183-191 (1995).
55. Tsuda, T., Ikeda, Y. & Taniguchi, N. The Asn-420-linked sugar chain in human epidermal growth factor receptor suppresses ligand-independent spontaneous oligomerization. Possible role of a specific sugar chain in controllable receptor activation. J Biol Chem 275, 21988-21994 (2000).
56. Guo, H.B., Lee, I., Kamar, M., Akiyama, S.K. & Pierce, M. Aberrant N-glycosylation of beta1 integrin causes reduced alpha5beta1 integrin clustering and stimulates cell migration. Cancer Res 62, 6837-6845 (2002).
57. Grewal, P.K., Holzfeind, P.J., Bittner, R.E. & Hewitt, J.E. Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse. Nat Genet 28, 151-154 (2001).
58. Guo, H.B., Lee, I., Bryan, B.T. & Pierce, M. Deletion of mouse embryo fibroblast N-acetylglucosaminyltransferase V stimulates alpha5beta1 integrin expression mediated by the protein kinase C signaling pathway. J Biol Chem 280, 8332-8342 (2005).
59. Isaji, T., et al. Introduction of bisecting GlcNAc into integrin alpha5beta1 reduces ligand binding and down-regulates cell adhesion and cell migration. J Biol Chem 279, 19747-19754 (2004).
60. Soderquist, A.M. & Carpenter, G. Glycosylation of the epidermal growth factor receptor in A-431 cells. The contribution of carbohydrate to receptor function. J Biol Chem 259, 12586-12594 (1984).
61. Takahashi, M., Tsuda, T., Ikeda, Y., Honke, K. & Taniguchi, N. Role of N-glycans in growth factor signaling. Glycoconj J 20, 207-212 (2004).
62. Yokoe, S., et al. The Asn418-linked N-glycan of ErbB3 plays a crucial role in preventing spontaneous heterodimerization and tumor promotion. Cancer Res 67, 1935-1942 (2007).
63. Zhou, W. & Tsai, H.M. N-Glycans of ADAMTS13 modulate its secretion and von Willebrand factor cleaving activity. Blood 113, 929-935 (2009).
64. Pili, R., et al. The alpha-glucosidase I inhibitor castanospermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth. Cancer Res 55, 2920-2926 (1995).
65. Smith, G.E., Summers, M.D. & Fraser, M.J. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3, 2156-2165 (1983).
66. Giese, N., May-Siroff, M., LaRochelle, W.J., van Wyke Coelingh, K. & Aaronson, S.A. Expression and purification of biologically active v-sis/platelet-derived growth factor B protein by using a baculovirus vector system. J Virol 63, 3080-3086 (1989).
67. Gillespie, L.S., Hillesland, K.K. & Knauer, D.J. Expression of biologically active human antithrombin III by recombinant baculovirus in Spodoptera frugiperda cells. J Biol Chem 266, 3995-4001 (1991).
68. Smith, G.E., et al. Modification and secretion of human interleukin 2 produced in insect cells by a baculovirus expression vector. Proc Natl Acad Sci U S A 82, 8404-8408 (1985).
69. Knebel, D., Lubbert, H. & Doerfler, W. The promoter of the late p10 gene in the insect nuclear polyhedrosis virus Autographa californica: activation by viral gene products and sensitivity to DNA methylation. EMBO J 4, 1301-1306 (1985).
70. Hodgson, J. Expression systems: a user's guide. Emphasis has shifted from the vector construct to the host organism. Biotechnology (N Y) 11, 887-893 (1993).
71. Gotoh, T., Miyazaki, Y., Chiba, K. & Kikuchi, K. Significant increase in recombinant protein production of a virus-infected Sf-9 insect cell culture of low MOI under low dissolved oxygen conditions. J Biosci Bioeng 94, 426-433 (2002).
72. Hu, Y.C., Tsai, C.T., Chang, Y.J. & Huang, J.H. Enhancement and prolongation of baculovirus-mediated expression in mammalian cells: focuses on strategic infection and feeding. Biotechnol Prog 19, 373-379 (2003).
73. Kim, J.S., et al. Production of recombinant polyhedra containing Cry1Ac fusion protein in insect cell lines. J Microbiol Biotechnol 17, 739-744 (2007).
74. Fuster, M.M. & Esko, J.D. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5, 526-542 (2005).
75. Calzada, M.J., et al. Alpha4beta1 integrin mediates selective endothelial cell responses to thrombospondins 1 and 2 in vitro and modulates angiogenesis in vivo. Circ Res 94, 462-470 (2004).
76. Short, S.M., et al. Inhibition of endothelial cell migration by thrombospondin-1 type-1 repeats is mediated by beta1 integrins. J Cell Biol 168, 643-653 (2005).