簡易檢索 / 詳目顯示

研究生: 黃獻輝
Xian-Hui Huang
論文名稱: 振動吸收器應用於仿生機械魚之擺尾推進
Application of Vibration Absorber in Robotic Fish Locomotion
指導教授: 葉廷仁
Ting-Jen Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 72
中文關鍵詞: 仿生機械魚振動吸收器系統共振擺尾推進
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在自然界中,生物為達成高效率與高機動性的運動,需不盲目地使用肌肉力量,並在善用與環境互動的狀況下以最佳的方式發揮身體彈性與慣性的動態。依此觀點來看,一般仿生機械魚透過致動器直接驅動魚尾達到擺尾推進之目的,與魚類運動模式有所出入。因此本研究對仿生機械魚的研究文獻進行分析,並對機械魚的仿生運動與實現方法進行研究,進而提出振動吸收器之新概念應用於擺尾推進的運動模式。而其控制策略主要是運用彈簧的特性,激發系統模態,使得魚體振動情形減小而魚尾擺動幅度增大,來達到擺尾推進之目的。此種控制方式不需要規畫複雜的運動軌跡,也不需要計算龐大的反向動力學,由於共振現象的應用,期望有別於全致動驅動的方式,達到省能與高效率仿生機械魚之目的。


    摘要 I 誌謝辭 II 目錄 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 1 1.3 本文架構 7 第二章 魚類運動模式及原理 8 2.1魚鰭型態的描述 8 2.2魚類推進的方式 9 2.3擺尾模式推進原理 11 第三章 基於振動吸收器之機械魚運動模型 13 3.1 概念闡釋 13 3.2 基於振動吸收器之線性運動模型描述與動態推導 14 3.2.1線性運動模型動態推導 15 3.2.2馬達工作頻率(陉)與系統參數之關係 17 3.2.3無因次化理論之應用 18 3.3基於振動吸收器之旋轉運動模型之描述與動態推導 23 3.3.1旋轉運動模型動態推導 23 3.3.2魚體內部致動器工作頻率(陉)之挑選 25 3.3.3無因次化理論之應用 27 第四章 機械魚主體設計 30 4.1 致動器的挑選 30 4.2 機構設計與製造 31 4.3防水設計 34 4.4電路規劃與程式設計 35 第五章 實驗結果與模擬 39 5.1 振動吸收器模擬結果 39 5.1.1線性運動模型模擬結果 39 5.1.2旋轉運動模型模擬結果 43 5.2仿生機械魚實驗結果與討論 46 5.2.1雛形機實驗與討論 47 5.2.2仿生機械魚實驗結果與討論 51 第六章 結論與未來工作 61 參考文獻 63 附錄一 65

    [1] K. Streitlien, et. Al., “Efficient Foil Propulsion Through Vortex Control, ” AIAA Journal, Vol.34, 1996, pp. 2315-2319.
    [2] http://www.dac.neu.edu/msc/burp.html
    [3] http://www.nmri.go.jp/eng/khirata/fish
    [4] http://www.akibalive.com/archives/000269.html
    [5] J. Liu and H. Hu “Development of Fish-like Swimming Behaviours for an Autonomous Robotic Fish,” IEE, Proceedings of the Control 2004, ID217
    [6] J. Liu and H. Hu “Novel Mechatronics Design for a Robotic Fish,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Edmonton, Canada, 2005, pp2077-2082.
    [7] J.Liu and H. Hu. “Mimicry of Sharp Turning Behaviours in a Robotic Fish,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation Barcelona, Spain, April 2005.pp3329-3334.
    [8] J.Liu and H. Hu. “Building a 3D Simulator for Autonomous Navigation of Robotic Fishes,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2004, pp613-618.
    [9] M. J. Lighthill,” Note on the swimming of slender fish,” J. Fluid Mech., Vol.9, 1960,pp.305-317.
    [10] J. Yu, el al. “Development of a Biomimetic Robotic Fish and Its Control Algorithm,” IEEE Trans. On Sys. Man. And Cyber. Vol. 34, No. 4. Aug. 2004, pp. 1798~1807.
    [11] S. D. Kelly, and R. M. Murry, “Modelling efficient pisciform swimming for control,” Int. J. Robust Nonlinear Control, 2000: 10:217-241.
    [12] K. Morgansen, et. Al. “Trajectory Stabilization for a Planar Carangiform Robot Fish,”Proceedings of the 2002 IEEE International Conference on Robotics & Automation Washington, D.C., May, 2002, pp. 756~762.
    [13] Bozkurttas, M, Dong, H., Mittal, R., Madden, P., Lauder, G., “Hydrodynamic performance of deformable fish fins and. flapping foils,” AIAA 2006-1392, Reno, Nevada
    [14] http://www.seattlerobotics.org/encoder/200211/autonomous_robotic_fish.html
    [15] http://www.neurotechnology.neu.edu/burp.html
    [16] http://www.mech.uwa.edu.au/bjs/Vibration/TwoDOF/Absorbers/default.html
    [17] http://www.sciscape.org/articles/fish_swim/index.html
    [18] http://www.kondo-robot.com/index.html
    [19] http://fishdb.sinica.edu.tw/~fishdmp/fhNormal/page02-a3i/f02a3i.htm
    [20] J.P. DEN HARTOG, Mechanical Vibration, DOVER, 1984.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE