簡易檢索 / 詳目顯示

研究生: 楊嘉誠
Chia-Cheng Yang
論文名稱: 銀鈀合金奈米粒子之製備及其在無電鍍沉積之應用
The Study of Ag/Pd Nanoparticles and Its Application to Electroless Deposition
指導教授: 王詠雲
Yung-Yun Wang
萬其超
Chi-Chao Wan
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 136
中文關鍵詞: 銀鈀奈米粒子活化無電鍍
外文關鍵詞: Ag/Pd nanoparticle, activation, electroless deposition
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討銀鈀奈米粒子之製備,以及應用銀鈀奈米粒子於無電鍍銅沉積之活化催化反應。銀鈀奈米粒子可經由反應性微胞(reactive micelle)的方法,在高溫迴流的條件下,合成出銀鈀奈米粒子。經由柴外光光譜及X光粉末繞射儀的鑑定,可以確定製備出銀鈀合金奈米粒子,並且由於反應性微胞排列方式不同,而使得銀鈀奈米粒子的排列結構呈現團聚的奈米結構。根據成份分析,此銀鈀奈米粒子的成份組成與製備溶液的組成相近,並且成功地催化無電鍍銅的沉積,其活性不亞於現有的錫鈀膠體製程。
    然而此反應性微胞製備之奈米粒子,由於外圍電荷帶電數較少,因此對於基材的吸附性較差,造成實際應用上之限制。因此,吾人將奈米粒子的微胞型保護劑改變成高分子型(PVP)保護劑,經由穿透式電子顯微鏡,分析奈米粒子的大小,根據柴外光光譜及X光粉末繞射儀的鑑定,可以確定製備出銀鈀合金奈米粒子。並根據電子能譜儀輔以硫醇官能基之鍵結,分析出此銀鈀奈米粒子為表面鈀成份較多的結構。無電鍍銅的反應,其催化步驟主要發生是在鈀原子表面,而在整體活性表現上,發現銀鈀(3/7)奈米粒子由於表面積大,因此催化無電鍍銅的效果比純鈀奈米粒子佳。此高分子保護之銀鈀奈米粒子除了可以成功地催化無電鍍銅,並顯示出利用此活化程序製備積體電路中銅內連線之可行性。
    在銀鈀奈米粒子生成的機制探討方面,吾人利用混合電位及交流阻抗頻譜儀之分析,可以發現銀離子比鈀離子先還原出來,而且由於有高分子與鈀離子有微弱的作用力,加上鈀離子在高分子中所受之擴散阻力較大,造成鈀離子在粒子成長過程中,較慢沉積在成核點,形成鈀在奈米粒子表面較多的現象。


    Ag/Pd nanoparticles have been synthesized with a reactive alcohol-type surfactant, sodium dodecyl sulfate (SDS), without the presence of an external reducing agent. Both UV-vis absorption spectra and X-ray diffraction patterns for the bimetallic and physical mixtures of individual nanoparticles revealed the formation of bimetallic structure. Based on this method, an ordered 3D grapelike nanostructure was formed possibly due to transformation of the liquid crystal phase of the micelles. Data from the energy dispersive X-ray analysis show that the composition of bimetallic nanoparticle is approximately equal to the feeding solution. Furthermore, the SDS-stabilized Ag/Pd nanoparticles exhibit distinct catalytic activity for electroless copper deposition and may become a substitute for conventional palladium system which is expensive and unstable in operation.
    Although SDS-stabilized Ag/Pd nanoparticles possessed good catalytic activity, its adhesion to the substrate was found less than satisfactory. Therefore, another improved system of Ag/Pd nanoparticles stabilized by poly(N-vinyl-2-pyrrolidone) (PVP) was developed. The PVP-stabilized Ag/Pd nanoparticles have been successfully synthesized in various molar ratios. The transmission electron microscopy (TEM) images show the diameters of Ag/Pd nanoparticles increased with increasing Pd molar ratios. UV-vis absorption spectra, X-ray diffraction patterns (XRD) and energy-dispersive X-ray analysis (EDX) all confirmed the formation of bimetallic structure. Additionally, the results of energy dispersive X-ray analysis (EDX) showed that the average composition of bimetallic nanoparticle was approximately equal to the feeding solution while the results of X-ray photoelectron spectroscopy (XPS) revealed the surface was palladium-rich, implying an inhomogeneous alloy structure. The Ag/Pd (3/7) nanoparticles show potential to be a new activator for electroless copper deposition. Furthermore, the surface composition and the thickness of adsorbed polymer have pronounced effect on catalytic activity. The activity of Ag/Pd nanoparticles declines in lockstep with the increasing PVP molecular weight. Moreover, the copper can be successfully deposited onto 0.25 pattern wafer.
    The effect of PVP and its role in the formation process of Ag/Pd nanoparticles were also investigated. Based on our study, the functional group of PVP has week interaction with Pd2+ ions, inducing a negative shift of the mixed potential. Ag+ ions have priority to be reduced over Pd2+ ions in the formation of Ag/Pd nanoparticles. The presence of PVP will hinder both Pd2+ and Ag+ ions. However, the steric obstacle effect of PVP would be more pronounced for Pd2+ ions and thus Pd2+ ions are more difficult to diffuse through the polymeric barrier in the particles’ growth stage. Accordingly, Pd2+ ions tend to deposit onto the preformed nuclei at a latter stage, rendering a palladium-rich surface structure of Ag/Pd nanoparticles. Moreover, the steric barrier of PVP would be less effective with increasing molecular weight possibly owing to the decreasing number of molecules.
    The feasibility of Ag/Pd nanoparticles as activator for electroless copper deposition was finally carried out. The crystalline structure of electroless Cu film was found unaffected by the type of activators. In addition, the Ag/Pd (3/7) nanoparticles had the shortest induction period and thus exhibited the highest activity, which demonstrated its potential to be a novel activator for electroless deposition.

    Abstract Ⅰ 摘要 Ⅲ Table of Content Ⅳ List of Figures Ⅷ List of Tables ⅩⅡ Chapter 1 Introduction to Palladium and Its Alloy Nanoparticles 1 1.1 Introduction 1 1.2 Synthesis of Palladium and Its Alloy Nanoparticles 3 1.2.1 Confined-space reduction method 3 1.2.2 Free-space reduction method 11 1.3 Spectroscopic Characterization 23 1.3.1 TEM observation 23 1.3.2 UV-vis spectrum 24 1.3.3 FTIR spectrum 25 1.3.4 X-ray methods 26 1.4 Catalytic Properties 31 1.4.1 Catalysis for organic coupling reaction 31 1.4.2 Catalysis hydrogenation of Olefins 37 1.4.3 Activation for electroless metal deposition 40 1.4.4 Other catalytic aspects 44 1.4.5 Hydrogen storage 45 1.5 Motive and Scope of this Dissertation 47 1.6 References 49 Chapter 2 Synthesis of Ag/Pd Nanopartilces via Reactive Micelles as Templates and Its Application to Electroless Copper Deposition 55 2.1 Introduction 55 2.2 Experiments 57 Materials 57 Preparation of nanoparticles 57 Characterization 58 2.3 Results and Discussions 59 UV-vis spectrum analysis 59 Particles size analysis 61 Particle structure 66 Formation process of Ag/Pd nanoparticles 69 Catalytic activity of Ag/Pd nanoparticles for electroless deposition 71 2.4 Conclusions 73 2.5 References 74 Chapter 3 Characterization of PVP Stabilized Ag/Pd Nanoparticles and Its Potential as an Activator for Electroless Copper Deposition 76 3.1 Introduction 76 3.2 Experiments 78 Materials 78 Preparation of nanoparticles 78 Characterization 78 3.3 Results and Discussions 81 UV-vis spectrum analysis 81 Particle size analysis 83 Particle structure 86 Compositional analysis 88 Catalytic activity of Ag/Pd nanoparticles for electroless deposition 92 Deposit electroless Cu film on IC wafer pattern 98 3.4 Conclusions 99 3.5 References 100 Chapter 4 The Role of PVP in the Formation Process of Ag/Pd Nanoparticles 102 4.1 Introduction 102 4.2 Experiments 104 Materials 104 Characterization 104 Electrochemical measurement 104 4.3 Results and Discussions 106 Potentiodynamic measurement 106 FTIR characterization 108 Cottrell experiment 110 AC impedance characterization 113 Feasibility test as an activator for electroless copper deposition 121 Induction time measurement 121 Morphology of electroless Cu film 124 Crystalline structure of electroless Cu film 126 4.4 Conclusions 127 4.5 References 128 Chapter 5 Conclusion and Suggestions for Further Work 130 5.1 Conclusions 130 5.2 Suggestions for Further Work 132 About the Author 135 Publications 136

    1. H. Bönnemann and R. M. Richards, Eur. J. Inorg. Chem., 10, 2455 (2001).
    2. N. Toshima and T. Yonezawa, New J. Chem., 22, 1179 (1998).
    3. G. Schmid, M. Harm, J. O. Bovin, J. V. Ruitenbeck, H. W. Zandbergen and W. T. Ruitenbeck, J. Am. Chem. Soc., 115, 2046 (1993).
    4. M. P. Pileni, Langmuir, 13, 3266 (1997).
    5. M. L. Wu, D. H. Chen and T. C. Huang, Langmuir, 17, 3877 (2001).
    6. D. H. Chen, C. C. Wang and T. C. Huang, J. Colloid Interf. Sci., 210, 123 (1999).
    7. V. Arcoleo, G. Cavallaro, G. L. Manna and V. T. Liveri, Thermochimica Acta., 254, 111 (1995).
    8. V. Chechik, M. Zhao and R. M. Crooks, J. Am. Chem. Soc., 121, 4910 (1999).
    9. V. Chechik, M. Zhao and R. M. Crooks, J. Am. Chem. Soc., 122, 1243 (2000).
    10. J. Richter, R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J. Plaschke and H. K. Schackert, Adv. Mater., 12, 507 (2000).
    11. M. T. Reetz, W. Helbig, S. A. Quaiser, U. S.Timming, N. Breuer and R. Vogel, Science, 267, 367 (1995).
    12. G. Schmid, Clusters and Colloids: from theory to applications, Wiley-VCH , New York, ch.4 (1994).
    13. T. K. Jain, G. Cassin, J. P. Badiali and M. P. Pileni, Langmuir, 12, 2408 (1996).
    14. M. L. Wu, D. H. Chen and T. C. Huang, J. Colloid Interf. Sci., 243, 102 (2001).
    15. R. M. Crooks, M. Zhao, L. Sun, V. Chechik and L. K. Yeung, Accounts Chem. Res., 34, 181 (2001).
    16. K. B. Lee, S. M. Lee and J. Cheon, Adv. Mater., 13, 517 (2001).
    17. H. Kang, Y. W. Jun, J. I. Park, K. B. Lee and J. Cheon, Chem. Mater., 12, 3530 (2000).
    18. J. Kiao, Y. Xie, R. Tang, M. Chen and X. Tain, Adv. Mater., 13, 1887 (2001).
    19. K. N. Mbindyo, T. E. Mallouk, J. B. Mattzela, I. Kratochvilova, B. Razavi, T. N. Jackson and T. S. Mayer, J. Am. Chem. Soc., 124, 4020 (2002).
    20. L. Z. Wang, J. L. Shi, J. Yu, W. H. Zhang and D. S. Yan, Mater. Letters, 45, 273 (2000).
    21. H. P. Lin, Y. R. Cheng, S. B. Liu and C. Y. Mou, J. Mater. Chem., 9, 1197 (1999).
    22. J. Walter, Adv. Mater., 12, 31 (2000).
    23. B, Xue, P. Chen, Q. Hong, J. Lin and K. L. Tan, J. Mater. Chem., 11, 2378 (2001).
    24. N. A. Dhas and A. Gedanken, J. Mater. Chem., 8, 445 (1998).
    25. K. Okitsu, H. Bandow and Y. Maeda, Chem. Mater., 8, 315 (1996).
    26. N. A. Dhas, H. Cohen and A. Gedanken, J. Phys. Chem. B,101, 6834 (1997).
    27. W. Chen, W. Cai, Y. Lei and L. Zhang, Mater. Letters, 50, 53 (2001).
    28. M. T. Reetz and W. Helbig, J. Am. Chem. Soc., 116, 7401 (1994).
    29. M. T. Reetz, M. Winter, R. Breinbauer, T. A. Thomas and W. Vogel, Chem. Eur. J., 7, 1084 (2001).
    30. M. T. Reetz, W. Helbig and S. A. Quaiser, Chem. Mater., 7, 2227 (1995).
    31. T. Teranishi and M. Miyake, Chem. Mater., 11, 3414 (1999).
    32. G. Schmid and L. F. Chi, Adv. Mater., 10, 515 (1998).
    33. T. Yonezawa, K. Imamura and N. Kimizuka, Langmuir, 17, 4701 (2001).
    34. D. E. Cliffel, F. P. Zamborini, S. M. Gross and R. W. Murray, Langmuir, 16, 9699 (2000).
    35. I. Quiros, M. Yamada, K. Kubo, J. Mizutani, M. Kurihara and H. Nishihara, Langmuir, 18, 1413 (2002).
    36. L. Lu, H. Wang, S. Xi and H. Zhang, J. Mater. Chem., 12, 156 (2002).
    37. H. Hirai, N. Yakura, Y. Seta and S. Hodoshima, React. Funct. Polym., 37, 121 (1998).
    38. H. P. Choo, K. Y. Liew and H. Liu, J. Mater. Chem., 12, 934 (2002).
    39. T. Teranishi and M. Miyake, Chem. Mater., 10, 594 (1998).
    40. A. Taleb, C. Petit and M. P. Pileni, Chem. Mater., 9, 950 (1997).
    41. A. Badia, W. Gao, S. Singh, L. Demers, L. Cuccia and L. Reven, Langmuir, 12, 1262 (1996).
    42. K. Naka, M. Yaguchi and Y. Chujo, Chem. Mater, 11, 849 (1999).
    43. C. C. Lee, C. C. Wan and Y. Y. Wang, Adv. Funct. Mater, 11, 344 (2000).
    44. A. Miyazaki, I. Balint, K. I. Aika and Y. Nakano, J. Catal., 204, 364 (2001).
    45. X. Auvray, C. Petipas, A. Lattes and I. RicoLattes, Colloid Surf. A, 123, 247 (1997).
    46. Q. S. Huo, D. I. Margolese and G. D. Stucky, Chem. Mater., 8, 1147 (1996).
    47. Y. Hendrikx and B. Pansu, J Phys. II, 6, 33 (1996).
    48. C. L. Lee, Ph. D Thesis, National Tsing Hua University, HsinChu, Taiwan (2002).
    49. C. C. Yang, C. C. Wan and Y. Y. Wang, J. Colloid Interface Sci.,279, 433 (2004)
    50. I. W. Lenggoro, B. Xia and K. Okuyama, Langmuir, 18, 4584 (2002).
    51. S. Giorgio, C. R. Henry, C. Chapon and J. M. Penisson, J. Cryst. Growth, 100, 254 (1990).
    52. J. A. Creighton and D. G. Eadon, J. Chem. Soc. Faraday Trans., 87, 3881 (1991).
    53. P. Mulvaney, Langmuir, 12, 788 (1996).
    54. J. S. Bradley, E. W. Hill, S. Behal and C. Klein, Chem. Mater., 4, 1234 (1992).
    55. J. S. Bradley, G. H. Via, L. Bonneviot and E. W. Hill, Chem. Mater., 8, 1895 (1996).
    56. D. D. Caro and J. S. Bradley, Langmuir, 13, 3067 (1997).
    57. H. J. Wasserman and J. S. Vermaak, Surface. Sci., 32, 168 (1972).
    58. C. R. Berry, Phys. Rev., 88, 596 (1952).
    59. C. Goyhenex, C. R. Henry and J. Urban, J. Philos. Mag. A, 69, 1073 (1994).
    60. C. Kuhrt and R. Anton, Thin Solid Films, 198, 301 (1991).
    61. J. W. Jacobs and D. Schryvers, J. Catal., 103, 436 (1987).
    62. R. Lamber, S. Wetjen and N. I. Jaeger, Phys. Rev. B., 51, 10986 (1995).
    63. S. B. Ziemecki., G. A. Jones, D. G. Swartzfager and R. L. Harlow, J. Am. Chem. Soc., 107, 4547 (1985).
    64. T. Yonezawa, S. Y. Onoue and T. Kunitake, Adv. Mater., 10, 414 (1998).
    65. K. C. Grabar, K. R. Brown, C. D. Keating, S. J. Stranick, S. L. Tang and M. J. Natan, Anal. Chem., 69, 471 (1997).
    66. K. C. Grabar, K. J. Allison, B. E. Baker, R. M. Bright, K. R. Brown, R. G. Freeman, A. P. Fox, C. D. Keating, M. D. Musick and M. J. Natan, Langmuir, 12, 2353 (1996).
    67. Y. Li, E. Boone, and M. A. El-Sayed, Langmuir, 18, 4921 (2002).
    68. J. L. Bars, U. Specht, J. S. Bradley and D. G. Blackmond, Langmuir, 15, 7621 (1999).
    69. J. G. Ciebien, R. E. Cohen and A. Duran, Supramolecular Science, 5, 31 (1998).
    70. C. L. Lee, Y. Y. Wang and C. C. Wan, J. Electrochem. Soc., 150, C125 (2003).
    71. Y. Li and A. EI-Sayed, J. Phys. Chem. B, 105, 8938 (2001).
    72. T. Teranishi and M. Miyake, Chem. Mater., 10, 594 (1998).
    73. L. Piccolo and C. R. Henry, J. Mol. Catal. A: Chem., 167, 181 (2001).
    74. S. W. Kim, M. Kim. W. Y. Lee and T. Hyeon, J. Am. Chem. Soc., 124, 7642 (2002).
    75. M. B. Thathagar, J. Beckers and G. Rothenberg, J. Am. Chem. Soc., 124, 11858 (2002).
    76. R. L. Augustine and S. T. O’Leary, J. Mol. Catal. A: Chemical, 95, 277 (1995).
    77. J. S. Bradly, E. W. Hill, S. Behal, C. Klein, B. Chaudret and A. Duteil, Chem. Mater., 4, 1234 (1992).
    78. S. Klingelhö1fer, W. Heitz, A. Greiner, S. Oestreich, S. Fö1rster and M. Antoneitti, J. Am. Chem. Soc., 119, 10116 (1997).
    79. . M. T. Reetz and E. Westermann, Anew. Chem. Int. Ed., 39, 165 (2000).
    80. H. Ohde, C. M. Wai, H. Kim, J. Kim and M. Ohde, J. Am Chem. Soc., 124, 4540 (2002).
    81. Y. Nui, L. K. Yeung and R. M. Crooks, J. Am. Chem. Soc., 123, 6840 (2001).
    82. M. Zhao and R. M. Crooks, Angew. Chem. Int. Ed., 38, 364 (1999).
    83. A. B. R. Mayer, J. E. Mark and S. H. Hausner, J. Applied Polymer Sci., 70, 1209 (1998).
    84. S. D. Yosi, V. Dubin and M. Angyal, Thin Solid Films, 262, 93 (1995).
    85. T. Osaka and H. Nagasak, J. Electrochem. Soc., 128, 1686 (1980).
    86. M. Paunovic and M. Schlesigerm, Fundaments of Electrochemical Deposition, John Wiley & Sons, New York (1998).
    87. C. H. Yang, Y. Y. Wang and C. C. Wan, J. Electrochem. Soc., 146, 4473 (1999)
    88. C. R. Shipley, U. S. Patent 3011, 920 (1961).
    89. A. J. Bard and L. R. Faulkner, Electrochemical Methods, John Wiley & Sons, New York (2001).
    90. M. L. Wu, D. H. Chen and T. C. Huang, Langmuir, 17, 3877 (2001).
    91. M. Spiro and D. M. de Jesus, Langmuir, 16, 2464 (2000).
    92. D. M. de Jesus and M. Spiro, Langmuir, 16, 4896 (2000).
    93. K. Ebitani, K. M. Choi, T. Mizugaki and K. Kaneda, Langmuir, 18, 1849 (2002)
    94. C. Nützenadel, A. Züttel, D. Chartouni, G. Schmid and L. Schlapbach, Eur. Phys. J. D., 8, 245 (2000).
    95. J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijnaarden, J. P. Dekker, D. G. deGRoot and N. J. Koeman, Nature, 380, 231 (1996).
    96. N. W tari, S. Ohnishi and Yishii, J. Phys.:Condens. Matter., 12, 6799 (2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE