研究生: |
李昌駿 Chang-Chun Lee |
---|---|
論文名稱: |
以介面破裂成長之預測法研究微電子元件之可靠度 Investigation of Micro Electronic Devices Reliability Using Interfacial Crack Growth Prediction Methodology |
指導教授: |
江國寧
Kuo-Ning Chiang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 179 |
中文關鍵詞: | 可靠度 、介面破裂 、J積分 、有限單元分析 、能量釋放率 、束縛/鬆放之破裂預測 、銅導線/低介電係數 、介電層連接 、封裝 、敏感度分析 、反應曲面法 |
外文關鍵詞: | Reliability, Interfacial crack, J-integral, FEA, Energy release rate, Tie-release crack prediction, Cu/low-k interconnects, Package, Sensitivity analysis, RSM |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了降低相鄰線路間所產生之高RC延遲效應,以大馬士革(Damascene)製程技術發展之多層堆疊結構型態的銅導線/低介電係數(Cu/low-k)材料系統,業已被採用作為下一世代積體電路(IC)晶片之導線連接系統。而此材料系統於滿足半導體電子元件之縮減元件尺度,與持續提升其操作性能等需求的同時,為一獲取電子訊號高速度傳遞之有效且急迫的解決方案。然而,接合材料間之熱膨脹係數(CTE)與彈性係數的不匹配。且,Low-k材料多具低破裂韌度(Fracture Toughness)與低接合黏著力之材料特性。因此,銅導線/低介電係數內導線連接系統在半導體前段晶圓與後段封裝製程之溫度負載的導入後,發生接合介面之破裂成長的可能性大幅增加。此破裂成長現象亦可見於其它電子元件諸如先進封裝結構內之焊點破壞。綜合以上所述,破裂失效情形已成為主要的熱電與力學耦合之可靠度問題,且亟待相關領域之研究者解決。
鑑於破裂失效問題對於元件可靠度之影響日益重要,本研究發展一基於有限單元計算之束縛/鬆放新式破裂預測方法,用以研究電子元件內之接合材料於介面破裂成長過程中,破裂應力對於元件可靠度影響之衝擊。再者,系統性地建立一以計算模擬為基底且結合統計分析方法之設計流程,採用敏感度分析與反應曲面法(RSM)研究顯著設計參數對於目標反應影響之程度。藉此,新式元件之力學可靠度於設計發展初期即可掌握與提升,並具減少需要試驗次數之優點。當使用本研究提出之新式破裂預測方法時,穩定破裂能量之估算,可藉由J積分方法,於裂縫尖端周圍配合適當地積分路徑與足夠有限單元網格之使用,以獲得一固定值。研究結果指出一矩形圍繞積分路徑將可得到穩定之材料介面裂縫破裂能量。而進行上述模擬分析時亦應遵守下列幾點重要規則:(a)裂縫尖端位置須置放於J積分路徑圍繞區域之中心點,且矩形路徑之長邊應與破裂波傳方向平行;(b)矩形路徑之深寬比(短邊/長邊)建議需小於0.1;(c) 於跨過接合材料介面之圍繞路徑短邊方向上,以破裂面為分隔點之各側材料至少需包含三層有限單元以減少數值計算之誤差。此外,利用四點彎矩試驗之有限單元分析與多層low-k介電薄膜的相關實驗結果之比較,驗證此J積分預測方法為可靠的。除了上述提及之基於能量法的破壞準則外,另一則可藉由模擬估算之介面破裂應力,配合已涵括考慮介面臨界應力的破壞準則,用以評估破裂發生之可能性。為了確保本研究提出之預測方法為正確且適切的,並揭露比較與傳統預測方法之差異,故選擇具Cu/low-k堆疊結構之PBGA封裝,以及DL-WLCSP晶圓級封裝結構作為破裂模擬分析之載具。研究分析之結果皆符合於相關實驗之結果。
由本研究之各項分析結果可知,針對於先進電子元件其破裂或脫層問題方面之力學可靠度所發展的預測方法,預期可廣泛地應用於各種元件結構。換言之,此基於破裂力學之新式破裂預測法,可應用於相異材料間之破裂發生、成長和延伸的預測;亦為本研究主要貢獻之處。
As the technology of the semiconductor process continues its scale miniaturization and improvement of electronic device performances, next-generation IC chips with Cu/low-k stacked structures and adopting the fabrication of a damascene module are being developed to meet the urgent requirements of reducing high RC delay so as to obtain high-speed signal communication. However, due to the mismatch in the CTE as well as a mismatch of elastic modulus existing in dissimilar materials, there is a high probability that doing so may contribute to interfacial cracks occurring or propagating within the multi-level interconnection system, composed of the copper interconnections and low-k materials, as a result of poor adhesion and intrinsically lower fracture toughness of the low-k materials when temperature loads are applied during the wafer level and the packaging level stages. Meanwhile, the phenomenon of crack growth is also observed in other devices such as the fracture of solder joints in advanced packaging structures. Therefore, this fracturing problem has become one of the critical issues for thermo-mechanical device reliability, which needs to be resolved urgently.
In this research, a novel tie-release crack prediction technique based on finite element calculation is developed to investigate the stress-induced impacts on the thermo-mechanical reliability of electronic interconnects during the whole cracking growth process of the bi-material interface. In addition, the entire processes of a simulation-based optimal design combined with statistics techniques are systemically constructed to study the impacts of the significant design parameters on the concerned response by using the sensitivity analysis and sequential RSM methodologies. Thus, the mechanical reliability of the new device will not only be greatly enhanced at the initial design stage, but the technique will also reduce the amount of required tests. On the other hand, when utilizing the proposed tie-release crack prediction technique through the use of a suitable integral contour path with sufficient finite element meshes adjacent to the crack tip, the cracking energy, which determines the opportunity of crack advance, is estimated by the J-integral method to tend toward a stable value. All analytic results indicate that a rectangular integral path is suggested for obtaining a stable J-integral value. In addition, the following conditions must also be satisfied with the J-value estimation in a FEA: (a) the crack tip must be at the center of the contour path, and the long side of the abovementioned contour path must be parallel to the direction of the crack propagation, (b) the aspect ratio of the contour path coming from the short side divided by the long side should be less than 0.1, and (c) the short side of the contour path, as well as the direction of the film thickness should include at least three layers of elements in each side of the fracture surface. Moreover, by means of a 4-point bending test FEA model and a comparison with the relative experimental data of multi low-k dielectric films, the methodology of finding a stable J-integral value for dissimilar materials has been validated to be reliable. In addition to the failure criterion based on the energy method referred to above, the simulation of an interfacial fracture based on the critical interfacial stresses estimation that must be determined experimentally is also adopted to judge the occurrence of the crack. To ensure that the proposed prediction methodology is correct and feasible, both wafer-level and packaging level device structures such as a PBGA package with Cu/low-k stacked structures, as well as the DL-WLCSP, respectively, for the fracture issues are implemented as the test vehicles to demonstrate the difference from the traditional prediction techniques. All analytic results reveal a good agreement with the consequences of relative device tests.
Based on the above, the development of design/prediction methodologies for the cracking/delamination issues regarding the mechanical reliability of advanced electronic devices presented in this investigation can be demonstrated and widely applied in various device structures. In other words, both the feasibility and the correctness of the novel prediction crack techniques based on fracture mechanics for resolving the problem of the interfacial crack occurring, growing and extending, in dissimilar materials are the major contributions of this research.
1. Z. M. Lee, “Liquid Encapsulant Technology and Its Development,” Industrial Materials, Vol. 151, pp. 117-131, Jul. 1999. (In Chinese)
2. J. H. Lau, Ball Grid Array Technology, McGraw-Hill, New York, 1995.
3. J. H. Lau, and S. W. R. Lee, Chip Scale Package (CSP), McGraw-Hill, New York, 1999.
4. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, 1995.
5. J. H. Lau, Low Cost Flip Chip Technologies, McGraw-Hill, New York, 2000.
6. G. S. Hsu, “Advanced Packaging Technology-Wafer Level Package,” Industrial Materials, Vol. 151, pp. 86-91, Jul. 1999. (In Chinese)
7. K. F. Becker, J. Erik, A. Ostmann, T. Braun, A, Neumann, R. Aschenbrenner, and H. Reichl, “Stackable System-on-Packages with Integrated Components,” IEEE Transactions on Advanced Packaging, Vol. 27, No. 2, pp. 268-277, May 2004.
8. R. R. Tummala, “SOP: What Is It and Why? A New Microsystem-Integration Technology Paradigm-Moore's law for System Integration of Miniaturized Convergent Systems of the Next Decade,” IEEE Transactions on Advanced Packaging, Vol. 27, No. 2, pp. 241-249, May 2004.
9. M. M. Tentzeris, J. Laskar, J. Papapolymerou, S. Pinel, V. Palazzari, R. Li, G. DeJean, N. Papageorgiou, D. Thompson, R. Bairavasubramanian, S. Sarkar, and J. H. Lee, “3D-Integrated RF and Millimeter-Wave Functions and Modules Using Liquid Crystal Polymer (LCP) System-on-Package Technology,” IEEE Transactions on Advanced Packaging, Vol. 27, No. 2, pp. 332-340, May 2004.
10. S. K. Pienimaa, J. Miettinen, and E. Ristolainen, “Stacked Modular Package,” IEEE Transactions on Advanced Packaging, Vol. 27, No. 3, pp. 461-466, Aug. 2004.
11. A. A. O. Tay, M. K. Iyer, R. R. Tummala, V. Kripesh, E. H. Wong, M. Swaminathan, C. P. Wong, M. D. Rotaru, R. Doraiswami, S. S. Ang, and E. T. Kang, “Next Generation of 100-/spl mu/m-Pitch Wafer-Level Packaging and Assembly for Systems-on-Package,” IEEE Transactions on Advanced Packaging, Vol. 27, No. 2, pp. 413-425, May 2004.
12. J. H. Lau, and Y. H. Pao, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, New York, 1997.
13. S. M. Heinrich, P. E. Liedtke, N. J. Nigro, A. F. Elkouh, and P. S. Lee, “Effect of Chip and Pad Geometry on Solder Joint Formation in SMT,” ASME Transaction Journal of Electronic Packaging, Vol. 115, pp.433-439, 1993.
14. S. M. Heinrich, M. Schaefer, S. A. Schroeder, and P. S. Lee, “Prediction of Solder Joint Geometries in Array-Type Interconnects,” ASME Transaction Journal of Electronic Packaging, Vol. 118, pp. 114-121, 1996.
15. J. H. L. Pang, D. Y. R. Chong, and T. H. Low, “Thermal Cycling Analysis of Flip-Chip Solder Joint Reliability,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 24, No. 4, pp. 705-712, Dec. 2001.
16. K. N. Chiang, Finite Element Analysis for Ball Grid Array, Workshop on Semiconductor Processing, Packaging, and Material into Twenty-First Centry, B-7, April 21 - 24, 1996, XingChu, Taiwan.
17. H. C. Cheng, K. N. Chiang, and M. H. Lee, “An Effective Approach for Three-Dimensional Finite Element Analysis of Ball Grid Array Typed Packages,” ASME Transaction Journal of Electronic Packaging, Vol. 120, pp. 129-134, 1998.
18. Y. H. Pao, E. Jih, V. Siddapureddy, X. Song, and R. Liu, “A Thermal Fatigue Model for Surface Mount Leadless Chip Resistor (LCR) Solder Joints,” Sensing, Modeling and Simulation in Engineering Electronic Packaging, EEP-Vol. 17, pp. 1-12, 1996.
19. J. H. Lau, C. Chang, and S. W. R. Lee, “Failure Analysis of Solder Bumped Flip Chip on Low-Cost Substrates,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 23, No. 1, pp. 19-28, 2000.
20. J. J. Wang, W. Ren, D. Q. Zou, and S. Liu, “Effect of Cleaning and Non-Cleaning Situations on the Reliability of Flip Chip Packages,” IEEE Transactions on Components and Packaging Technologies, Vol. 22, No. 2, pp. 221-228, 1999.
21. M. Todd, “Effects of Non-Clean Flux Residue on the Performance of Flip-Chip Devices,” Proceeding of International Symposium on Advanced Packaging Material, pp. 180-182, Mar. 6-8, 2000, Braselton, Georgia, USA.
22. Y. Ohshima, T. Nakazawa, K. Doi, H. Aoki, and Y. Hiruta, “Flip Chip Underfill Reliability of CSP During IR Reflow Soldering,” Proceedings of 35th IEEE International Reliability Physics Symposium, pp. 124-128, Apr. 8-10, 1997, Denver, Colorado, USA.
23. J. H. Jeng, and T. E. Hsieh, “Application of Al/PI Composite Bumps to COG Bonding Process,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 2, pp. 271-278, Jun. 2004.
24. H. C. Cheng, C. L. Ho, K. N. Chiang, and S. M. Chang, “Process-dependent Contact Characteristics of NCA Assemblies,” IEEE Transactions on Components and Packaging Technologies, Vol. 27, No. 2, pp. 398-410, Jun. 2004.
25. P. Elenius, S. Barrett, and T. Goodman, “Ultra CSPTM -A Wafer Level Package,” IEEE Transactions on Advanced Packaging, Vol. 23, No. 2, pp. 220-226, May 2000.
26. H. Yang, P. Elenius, and S. Barrett, “Ultra CSPTM Bump on Polymer Structure,” International Symposium on Advanced Packaging Materials, pp. 211-215, Mar. 6-8, 2000, Chateau Elan, Braselton, Georgia, USA.
27. F. Y. Xu, R. Bymark, and B. L. Hsu, “A Novel Epoxy Encapsulant for CSP (μBGA)-New Hydrophobic Epoxy Elastomer,” International Symposium on Advanced Packaging Materials, pp. 83-89, 2000.
28. A. Kazama, T. Satoh, Y. Yamaguchi, I. Anjoh, and A. Nishimura, “Development of Low-cost and Highly Reliable Wafer Package,” 51st Electronic Components and Technology Conference, pp. 40-46, May 29-June 1, 2001, Orlando, Florida, USA.
29. I. S. Kang, J. H. Kim, I. S. Park, K. R. Hur and S. J. Cho, “The Solder Joint and Runner Metal Reliability of Wafer-Level CSP (Omega-CSP),” 50th Electronic Components and Technology Conference, pp. 87-92, May 21-24, 2000, Las Vegas, NV, USA.
30. J. Y. Kim, I. S. Kang, M. G. Park, J. H. Kim, S. J. Cho, I. S. Park and H. S. Chun, “Characterization of Wafer Level Package for Mobile Phone Application,” 51st Electronic Components and Technology Conference, pp. 1398-1401, May 29-June 1, 2001, Orlando, Florida, USA.
31. T. Kawahara, “SuperCSPTM,” IEEE Transactions on Advanced Packaging, Vol. 23, No. 2, pp. 215-219, May 2000.
32. K. C. Chang, and K. N. Chiang, “Solder Joint Reliability Analysis of Wafer-Level CSP Assembly with Cu Studs Formed on Solder Pads,” Journal of the Chinese Institute of Engineers, Vol. 26, No. 4, pp. 467–479, 2003.
33. J. C. Lin, H. C. Cheng, and K. N. Chiang, “Design and Analysis of Wafer-Level CSP With a Double-Pad Structure,” IEEE Transactions on Components and Packaging Technologies, Vol. 28, No. 1, pp. 117-126, Mar. 2005.
34. M. Gonzalez, B. Vandevelde, M. V. Bulcke, C. Winters, E. Beyne, Y. J. Lee, L. Larson, B. R. Harkness, M. Mohamed, H. Meynen, and E. Vanlathem, “An Analysis of the Reliability of a Wafer Level Package (WLP) Using a Silicone Under the Bump (SUB) Configuration,” 53rd Electronic Components and Technology Conference, pp. 857-863, May 27-30, 2003, New Orleans, Louisiana, USA.
35. G. Gardner, B. Harkness, E. Ohare, H. Meynen, M. V. Bulcke, M. Gonzalez, and E. Beyne, “Integration of a Low Stress Photopatternable Silicone into a Wafer Level Package,” 54th Electronic Components and Technology Conference, pp. 170-174, June 1-4, 2004, Las Vegas, NV, USA.
36. M. Gonzalez, M. V. Bulcke, B. Vandevelde, E. Beyne, Y. Lee, B. Harkness, and H. Meynen, “Finite Element Analysis of an Improved Wafer Level Package using Silicone Under Bump (SUB) Layers,” 5th Int. Conf. On Thermal and Mechanical Simulation and Experiments in Micro-electronics and Micro-Systems, EuroSimE2004, pp. 163-168, May 10-12, 2004, Novotel Tour Noire, Brussels, Belgium.
37. V. Solberg, D. Light, and J. Fjelstad, “Reliable and Low Cost Wafer Level Packaging,” IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 108-114, Oct. 2-3, 2000.
38. J. Novitsky, and D. Pedersen, “FormFactor Introduces an Integrated Process for Wafer-Level Packaging, Burn-in Test, and Module Level Assembly,” International Symposium on Advanced Packaging Materials, pp. 226-231, Mar. 14-17, 1999, Chateau Elan, Braselton, Georgia, U.S.A.
39. Q. Zhu, L. Ma, and S. K. Sitaraman, “Design Optimization of One-Turn Helix: A Novel Compliant Off-Chip Interconnect, ” IEEE Transactions on Advanced Packaging, Vol. 26, No. 2, pp. 106-112, May 2003.
40. G. Lo, and S. K. Sitaraman, “G-Helix : Lithography-Based Wafer-Level Compliant Chip-to-Substrate Interconnects,” 54th Electronic Components and Technology Conference, pp.320-325, June 1-4, 2004, Las Vegas, NV, USA.
41. Q. Zhu, L. Ma, and S. K. Sitaraman, “Development of G-Helix Structure as Off-Chip Interconnect,” ASME Transaction Journal of Electronic Packaging, Vol. 126, No. 2, pp. 237-246, Jun. 2004.
42. M. S. Bakir, H. A. Reed, H. D. Thacker, C. S. Patel, P. A. Kohl, K. P. Martin, and J. D. Meindl, “Sea of Leads (SoL) Ultrahigh Density Wafer-Level Chip Input/Output Interconnections for Gigascale Integration (GSI),” IEEE Transactions on Electron Devices, Vol. 50, No. 10, pp. 2039-2048, Oct. 2003.
43. M. S. Bakir, B. Dang, R. Emery, G. Vandentop, K. P. Martin, P. A. Kohl, and J. D. Meindl, “Chip Integration of Sea of Leads Compliant I/O Interconnections for the Ultimate Enabling of Chips with Low-k Interlayer Dielectrics,” 54th Electronic Components and Technology Conference, pp. 1167-1173, June 1-4, 2004, Las Vegas, USA.
44. S. Matsuzono, S. Uegaki, S. Sato, and S. Matsuda, “Snap Array CSPTM - Ceramic CSPs for High Performance and High Reliability Applications,” 50th Electronic Components and Technology Conference, pp. 1600-1604, May 21-24, 2000, Las Vegas, NV, USA.
45. J. Zhu, “Effects of Anchor Pads in Micro-Scale BGA,” 50th Electronic Components and Technology Conference, pp. 1731-1736, May 21-24, 2000, Las Vegas, NV, USA.
46. Sidharth, V. Valluri, R. Gannamani, and M. Zhang, “Characterization of a Novel Fine-Pitch Ball Grid Array Package for Flash Memory Application,” 50th Electronic Components and Technology Conference, pp. 353-357, May 21-24, 2000, Las Vegas, NV, USA.
47. J. D. Wu, S. H. Ho, C. Y. Huang, C. C. Liao, P. J. Zheng, and S. C. Hung, “Board Level Reliability of a Stacked CSP Subjected to Cyclic Bending,” Microelectronics Reliability, Vol. 42, No. 3, pp. 407-416, Mar. 2002.
48. C. M. Liu, and K. N. Chiang, “Solder Shape Design and Thermal Stress/strain Analysis of Flip Chip Packaging Using Hybrid Method,” International Symposium on Electronic Materials and Packaging (EMAP 2000), pp. 44-50, Nov. 30- Dec. 2, 2000.
49. C. M. Liu, and K. N. Chiang, “Solder Reflow Prediction of Hybrid Pad Packaging System,” The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2000 (ITHERM 2000), Vol. 2, pp. 340-348, May 23-26, 2000.
50. K. C. Chang, and K. N. Chiang, “Improvements of Solder Ball Shear Strength of a Wafer-Level CSP Using a Novel Cu Stud Technology,” IEEE Transactions on Components and Packaging Technologies, Vol. 27, No. 2, pp. 373-382, Jun. 2004.
51. B. Keser, B. Yeung, J. White, and T. Fang, “Encapsulated Double-Bump WL-CSP: Design and Reliability,” 51st Electronic Components and Technology Conference, pp. 35-39, May 29-June 1, 2001, Orlando, Florida, USA.
52. M. Topper, “Fab Integrated Packaging (FIP): a New Concept for High Reliability Wafer-Level Chip Size Packaging,” 50th Electronic Components and Technology Conference, pp. 74-80, May 21-24, 2000, Las Vegas, NV, USA.
53. D. H. Kim, P. Elenius, M. Johnson, and S. Barrett, “Solder Joint Reliability of a Polymer Reinforced Wafer Level Package,” Microelectronics Reliability, Vol. 42, No. 12, pp. 1837-1848, Dec. 2002.
54. J. Y. Kim, I. S. Kang, M. G. Park, J. H. Kim, S. J. Cho, I. S. Park, and H. S. Chun, “Characterization of Wafer Level Package for Mobile Phone Application,” 51st Electronic Components and Technology Conference, pp. 1-4, May 29-June 1, 2001, Orlando, Florida, USA.
55. D. H. Kim, P. Elenius, and S. Barrett, “Solder Joint Reliability and Characteristics of Deformation and Crack Growth of Sn-Ag-Cu Versus Eutectic Sn-Pb on a WLP in a Thermal Cycling Test,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No. 2, pp. 84-90, 2002.
56. 品管學會及可靠度推行委員會,可靠度工程實務,財團法人中衛發展中心,頁395-407,1994。
57. J. H. Lau, and Y. H. Pao, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, pp. 29-32, 1997.
58. 黃文璋,數理統計,華泰文化,初版,頁401-452,2003。
59. R. Darveaux, K. Banerji, A. Mawer, and G. Dody, “Reliability of Plastic Ball Grid Array Assembly,” Chapter 13 in Ball Grid Array Technology, Ed. J. H. Lau, McGraw-Hill, pp. 379-442, 1995.
60. R. Darveaux, “Effect of Simulation Methodology on Solder Joint Crack Growth Correlation,” 50th Electronic Components and Technology Conference, pp.1048-1058, May 21-24, 2000, Las Vegas, Nevada, USA.
61. R. Darveaux, “Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction,” ASME Transaction Journal of Electronic Packaging, Vol. 124, No. 3, pp. 147-154, Sep. 2002.
62. L. Zhang, R. Sitaraman, V. Patwardhan, L. Nguyen, and N. Kelkar, “Solder Joint Reliability Model with Modified Darveaux’s Equations for the Micro SMD Wafer Level-Chip Scale Package Family,” 53rd Electronic Components and Technology Conference, pp. 572-577, May 27-30, 2003, New Orleans, Louisiana, USA.
63. L. Zhang, V. Arora, L. Nguyen, and N. Kelkar, “Numerical and Experimental Analysis of Large Passivation Opening for Solder Joint Reliability Improvement of Micro SMD Packages,” Microelectronics Reliability, Vol. 44, No. 3, pp. 533-541, Mar. 2004.
64. H. D. Solomon, “Fatigue of 60/40 Solder,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 9, No. 4, pp. 91-104, Dec. 1986.
65. J. P. Clech, “BGA, Flip-Chip and CSP Solder Joint Reliability of the Importance of Model Validation,” 1999 International Electronic Packaging Technical Conference and Exhibition, pp. 211-217, June 13-19, 1999, Maui, Hawaii, USA.
66. R. Satoh, K. Arakawa, M. Harada, and K. Matsui, “ Thermal Fatigue Life of Pb-Sn Alloy Interconnections,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. 14, No. 1, pp. 224-232, Mar. 1991.
67. J. H. Lau, “Solder Joint Reliability of Flip Chip and Plastic Ball Grid Array Assemblies Under Thermal, Mechanical, and Vibrational Conditions,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, Vol. 19, No. 4, pp. 728-735, Nov. 1996.
68. K. N. Chiang, C. N. Liu, and C. T. Peng, “Parametric Reliability Analysis of No-Underfill Flip Chip Package,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 4, pp. 635-640, Dec. 2001.
69. K. N. Chiang, and C. M. Liu, “A Comparison of Thermal Stress/Strain Behavior of Elliptical/Round Solder Pads,” ASME Transaction Journal of Electronic Packaging, Vol. 123, pp. 1-5, Jun. 2001.
70. K. N. Chiang, Y. T. Lin, and H. C. Cheng, “On Enhancing Eutectic Solder Joint Reliability Using a Second-Reflow-Process Approach,” IEEE Transactions on Advanced Packaging, Vol. 23, No. 1, pp. 9-14, Feb. 2000.
71. L. L. Mercador, V. Sarihan, Y. Guo, and A. Mawer, “Impact of Solder Pad Size on Solder Joint Reliability in Flip Chip PBGA Packages,” IEEE Transactions on Advanced Packaging, Vol. 23, pp. 415-420, Aug. 2000.
72. H. C. Cheng, K. N. Chiang, and C. K. Chen, ‘‘Parametric Analysis of Thermally Enhanced BGA Reliability Using a Finite-Volume-Weighted Averaging Technique,’’ ASME-WAM, Thermo-Mechanical Characterization of Evolving Packaging Materials and Structures, EEP-Vol. 24, pp. 13–20, 1998.
73. B. Vandevelde, E. Beyne, G. Q. Zhang, J. Caers, D. Vandepitte, and M. Baelmans, “Parameterized Modeling of Thermomechanical Reliability For CSP Assemblies,” ASME Transaction Journal of Electronic Packaging, Vol. 125, No. 4, pp. 498-505, Dec. 2003.
74. W. D. van Driel, G. Q. Zhang, J. H. J. Janssen, and L. J. Ernst, “Response Surface Modeling For Nonlinear Packaging Stresses,” ASME Transaction Journal of Electronic Packaging, Vol. 125, No. 4, pp. 490-497, Dec. 2003.
75. T. Y. Tee, and Z. Zhong, “Board Level Solder Joint Reliability Analysis and Optimization of Pyramidal Stacked Die BGA Packages,” Microelectronic Reliability, Vol. 44, No. 12, pp. 1957-1965, Dec. 2004.
76. D. G. Yang, J. S. Liang, Q. Y. Li, L. J. Ernst, and G. Q. Zhang, “Parametric Study on Flip Chip Package with Lead-Free Solder Joints by Using the Probabilistic Designing Approach,” Microelectronic Reliability, Vol. 44, No.12, pp. 1947-1955, Dec. 2004.
77. G. Q. Zhang, and J. Bisschop, “Integrated Thermo-Mechanical Design and Qualification of Wafer Backend Structures,” Microelectronic Reliability, Vol. 44, No. 9-11, pp. 1349-1354, Sep.-Nov. 2004.
78. O. Takayuki, “A Study of Current Multilevel Interconnect Technologies for 90 nm Nodes and Beyond,” Journal of FUJITSU Science Technology, Vol. 38, No.1, pp.13-21, Jun. 2002.
79. F. Lanckmans, S. H. Brongersma, I. Varga, and S. Poortmans, “A Quantitative Adhesion Study between Contacting Materials in Cu Damascene Structures,” Applied Surface Science, Vol. 201, No. 1-4, pp. 20-34, Nov. 2002.
80. H. Y. Li, Y. J. Su, C. F. Tsang, S. M. Sohan, V. Bliznetsov, and L. Zhang, “Process Improvement of 0.13 mm Cu/low-k (Black DuamondTM) Dual Damascene Interconnection,” Microelectronic Reliability, Vol. 45, No. 7-8, pp. 1134-1143, Jul.-Aug. 2005.
81. G. B. Alers, K. Jow, R. Shaviv, G. Kooi, and G. W. Ray “Interlevel Dielectric Failures in Copper/Low-k Structures,” IEEE Transactions on Device and Materials Reliability, Vol. 4, No. 2, pp. 148-152, Jun. 2004.
82. A. H. Makarem, and H. Jun, “Materials’ Impact on Interconnect Process Technology and Reliability,” IEEE Transactions on Semiconductor Manufacturing, Vol. 18, No. 1, pp. 69-85, Feb. 2005.
83. C. D. Hartfield, E. T. Ogawa, Y. J. Park, T. C. Chiu, and H. Guo, “Interface Reliability Assessments for Copper/Low-k Products,” IEEE Transactions on Device and Materials Reliability, Vol. 4, No. 2, pp. 129-141, Jun. 2004.
84. K. D. Lee, and P. S. Ho, “Statistical Study for Electromigration Reliability in Dual-Damascene Cu Interconnects,” IEEE Transactions on Device and Materials Reliability, Vol. 4, No. 2, pp. 237-245, Jun. 2004.
85. J. M. Paik, H. Park, and Y. C. Joo, “Effect of Low-k Dielectric on Stress and Stress-Induced Damage in Cu Interconnects,” Microelectronic Engineering, Vol. 71, No. 3-4, pp. 348-357, May 2004.
86. S. Christine and R. Hau, “An Introduction to Cu Electromigration,” Microelectronic Reliability, Vol. 44, No. 2, pp. 195-205, Feb. 2004.
87. M. Lane, N. Krishna, I. Hashim, and R. H. Dauskardt, “Adhesion and Reliability of Copper Interconnects with Ta and TaN Barrier Layers,” Journal of Materials Research, Vol. 15, No. 1, pp. 203-211, Jan. 2000.
88. M. Lane, A. Vainchtein, H. Gao, and R. H. Dauskardt, “Plasticity Contributions to Interface Adhesion in Thin-Film Interconnect Structures,” Journal of Materials Research, Vol. 15, No. 12, pp. 2758-2769, Dec. 2000.
89. Z. Gan, S. G. Mhaisalkar, Z. Chen, k. Prasad, S. Zhang, M. Damayanti, and N. Jiang, “ Modified of Ta/Polymeric Low-k Interface by Electron-Beam Treatment,” Journal of The Electrochemical Society, Vol. 153, no. 1, pp. G30-G34, 2006.
90. J. Vitiello, A. Fuchsmann, L. Chapelon, V. Arnal, D. Barbier, and J. Torres, “Impact of Dielectric Stack and Interface Adhesion on Mechanical Properties of Porous Ultra Low-k,” Microelectronic Engineering, Vol. 82, No. 3-4, pp. 422-426, Dec. 2000.
91. E. Andideh, J. Blaine, C. Block, B. Jin, T. Scherban, and B. Sun, “Interfacial Adhesion of Cu-low k Interconnects,” 2001 IEEE International Interconnect Technology Conference, pp. 257–259, Jun. 4-6, 2001.
92. S. Balakumar, X. T. Chen, Y. W. Chen, T. Selvaraj, B. F. Lin, R. Kumar, T. Hara, M. Fujimoyo, and Y. Shimura, “Peeling and Delamination in Cu/SiLK Process During Cu-CMP,” Thin Solid Films, Vol. 462-463, pp. 161-167, Sep. 2004.
93. L. L. Mercado, S. M. Kuo, C. Goldberg, and D. Frear, “Impact of Flip-Chip Packaging on Copper Low-k Structures,” IEEE Transactions on Advanced Packaging, Vol. 26, No. 4, pp. 433-440, Nov. 2003.
94. L. L. Mercado, C. Goldberg, S.-M. Kuo, T. Y. Lee, and S. K. Pozder, “Analysis of Flip-Chip Packaging Challenges on Copper/Low-k Interconnects,” IEEE Transactions on Device and Materials Reliability, Vol. 3, No. 4, pp. 111-118, Dec. 2003.
95. A. A. Volinsky, N. R. Moody, and W. W. Gerberich, “Interfacial Toughness Measurements for Thin Films on Substrate,” Acta Materialia, Vol. 50, No. 3, pp. 441-446, Feb. 2002.
96. J. Blaine, G. Kloster, T. Scherban, B. Sun, G. Xu, and Y. Zhou, “Porosity Effects on Low-k Dielectric Film Strength and Interfacial Adhesion,” 2002 IEEE International Interconnect Technology Conference, pp. 242–244, Jun. 3-5, 2002.
97. N. Aoi, T. Fukuda, and H. Yanazawa, “Evaluation and Analysis for Mechanical Strengths of Low-k Dielectrics by a Finite Element Method,” 2002 IEEE International Interconnect Technology Conference, pp. 72–74, Jun. 3-5, 2002.
98. L. L. Mercado, S. M. Kuo, and C. Goldberg, “Impact of Flip-Chip Packaging on Copper Low-k Structures for the 0.13 Micron Technology,” in 3rd International Conference Thermal and Mechanical Simulation in (Micro) Electronics, Paris, France, 2002.
99. L. L. Mercado, C. Goldberg, and S. M. Kuo, “A Simulation Method for Predicting Packaging Mechanical Reliability with Low-k Dielectrics,” 2002 IEEE International Interconnect Technology Conference, pp. 119–121, Jun. 3-5, 2002.
100. G. Wang, S. Groothuis, and P. S. Ho, “Effect of Packaging on Interfacial Cracking in Cu/Low-k Damascene Structures,” 53rd Electronic Components and Technology Conference, pp. 727-732, May 27-30, 2003, New Orleans, Louisiana, USA.
101. P. S. Ho, and M. R. Miller, “Interfacial Adhesion Study for Cu/SiLK Interconnects in Flip-Chip Packages,” 51st Electronic Components and Technology Conference, pp. 965-970. May 29-June 1, 2001, Orlando, Florida, USA.
102. W. D. van Driel, M. A. J. van Gils, R. B. R. van Silfhout, and G. Q. Zhang, “Prediction of Delamination Related IC & Packaging Reliability Problems,” Microelectronic Reliability, Vol. 45, No. 9-11, pp. 1633-1638, Sep.-Nov. 2005.
103. Y. T. He, G. Q. Zhang, W. D. van Driel, X. J. Fan, and L. J. Ernst, “Cracking Prediction of IC’s Passivation Layer Using J-Integral,” 5th International Conference on Electronic Packaging Technology Proceedings (ICEPT), pp. 362-367, Oct. 28-30, 2003.
104. M. Rasco, K. Mosig, J. Ling, P. Elenius, and R. Augur, “Packaging Assessment of Porous Ultra Low-k Materials,” 2002 IEEE International Interconnect Technology Conference, pp. 113-115, Jun. 3-5, 2002.
105. J. G. Williams, “On the Calculation of Energy Release Rates for Cracked Laminates,” International Journal of Fracture, Vol. 36, No. 2, pp. 101-119, Feb. 1988.
106. L. Banks-Sills, “Application of the Finite Element Method to Linear Elastic Fracture Mechanics,” Applied Mechanics Reviews, Vol. 44, No. 10, pp. 447-461, Oct. 1991.
107. W. T. Chow, and S. N. Atluri, “Stress Intensity Factors as the Fracture Parameters for Delamination Crack Growth in Composite Laminates,” Composites, Part B: Engineering, Vol. 28, No. 4, pp. 375-384, 1997.
108. M. Gosz, and B. Moran, “An Interaction Energy Integral Method for Computation of Mixed-Mode Stress Intensity Factors Along Non-Planar Crack Fronts in the Three Dimensions,” Engineering Fracture Mechanics, Vol. 69, No. 3, pp. 299-319, Feb. 2002.
109. O. Park, and B.V. Snakar, “Crack-Tip Force Method for Computing Energy Release Rate in Delaminated Plates,” Composite Structures, Vol. 55, No. 4, pp. 429-434, Mar. 2002.
110. J. St. Doltsinis, H. Kanapp, P. Streiner, and H. Wustenberg, “PERMAS-FM, Fracture Mechanics,” INTTES GmbH, Stuttgart, User Manual, Publication No. 226, Rev. C, 1985.
111. R. Kruger, M. Kunig, and T. Schineider, “Computation of Local Energy Release Rates Along Straight and Curved Delamination Fronts of Unidirectionally Laminated DCB and ENF Specimens,” the 34th AIAA/ASME/ASCE/AHS/ASC SSDM Conference, La Jolla, CA: American Institute of Aeronautics and Astronautics, Washington, pp. 1332-1342, Apr. 19-22, 1993, La Jolla, CA, USA.
112. T. K. Hellen, “On the Method of Virtual Crack Extension,” International Journal for Numerical Methods in Engineering, Vol. 9, No. 1, pp. 187-207, 1975.
113. D. M. Parks, “Stiffness Derivative Finite Element Technique for Determination of Crack Tip Stress Intensity Factors,” International Journal of Fracture, Vol. 10, No. 4, pp. 487-502, Dec. 1974.
114. D. M. Parks, “The Virtual Crack Extension, Method for Nonlinear Material Behavior,” Computer Methods in Applied Mechanics and Engineering, Vol. 12, No. 3, pp. 353-364, Dec. 1977.
115. D. M. Parks, “Virtual Crack Extension: A General Finite Element Technique for J-Integral Evaluation,” in Numerical Methods in Fracture Mechanics, A. R. Luxmoore and D.R.J. Owen, Eds, 1978, pp, 464-479.
116. H. G. Delorenzi, “On the Energy Release Rate and the J-Integral for 3-D Crack Configurations,” International Journal of Fracture, Vol. 19, No. 3, pp. 183-193, Jul. 1982.
117. H. G. Delorenzi, and C. D. Shih, “3-D Elastic-Plastic Investigation of Fractures in Dide-Grooved Compact Specimen,” International Journal of Fracture, Vol. 21, No. 3, pp. 195-220, Mar. 1983.
118. H. G. Delorenzi, “Energy Release Rate Calculations by the Finite Element Method,” Engineering Fracture Mechanics, Vol. 21, No. 1, pp. 129-143, 1985.
119. S. C. Lin, and J. F. Abel, “Variation Approach for a New Direct- Integration From of the Virtual Crack Extension Method,” International Journal of Fracture, Vol. 38, No. 3, pp. 217-235, Nov. 1988.
120. P. W. Claydon, “Maximum Energy Release Rate Distribution From a Generalized 3D Virtual Crack Extension Method,” Engineering Fracture Mechanics, Vol. 42, No. 6, pp. 961-969, Aug. 1992.
121. C. G. Hwang, P. A. Wawrzynek, A. K, Tayebi, and A. R. Ingraffea, “On the Virtual Crack Extension Method for Calculation of the Rates Release Rate,” Engineering Fracture Mechanics, Vol. 59, No. 4, pp. 521-542, Mar. 1988.
122. H. Ishikawa, “A Finite Element Analysis of Stress Intensity Factors for Combined Tensile and Shear Loading by Only a Virtual Crack Extension,” International Journal of Fracture, Vol. 16, No. 5, pp. 243-246, Oct. 1980.
123. G. T. Sha, “On the Virtual Crack Extension Technique for Stress Intensity Factors and Energy Release Rate Calculations for Mixed Fracture Mode,” International Journal of Fracture, Vol. 25, No. 2, pp. 33-42, Jun. 1984.
124. E. F. Rybicki, and M. F. Kanniner, “A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral,” Engineering Fracture Mechanics, Vol. 9, No. 4, pp. 931-938, 1977.
125. I. S. Raju, “Calculation Of Strain-Energy Release Rates With Higher Order And Singular Finite Element,” Engineering Fracture Mechanics, Vol. 28, No. 3, pp. 251-274, 1987.
126. F. G. Buchholz, H. Grebner, K. H. Dreyer, and H. Krome, “2D and 3D Applications of the Improved and Generalized Modified Crack Closure Integral Method,” in Computational Mechanics’88, S. N. Atluri and G. Yagawa, Eds., 1988.
127. E. F. Rybicki, D. W. Schnueser, and J. Fox, “An Energy Release Rate Approach for Stable Crack Growth in the Free-Edge Delaminination Problem,” Journal of Composite Materials, Vol. 11, pp. 470-487, Oct. 1997.
128. V. Gonda, J. d. Toonder, J. Beijer, G. Q. Zhang, and L. J. Ernst, “The Effect of Material Properties and Initial Defects on the Thermo-mechanical Behavior of a Dual Damascene Module,” 54th Electronic Components and Technology Conference, pp.1048-1058, 2004, Las Vegas, Nevada, USA.
129. B. Xu, X. Cai, W. Huang, and Z. Cheng, “Research of Underfill Delamination in Flip Chip by the J-Integral Method,” ASME Transaction Journal of Electronic Packaging, Vol. 126, No. 1, pp. 94-99, Mar. 2004.
130. A. A. Griffith, “The Phenomena of Rupture and Flow in Solids,” Philosophical Transactions of the Royal Society, Vol. 221, pp. 163-197, 1921.
131. A. A. Griffith, “The Theory of Rupture,” 1st International Congress Applied Mechanics, pp. 55-63, 1924.
132. G. R. Irwin, “Fracture,” Handbuch der Physik, Vol. Ⅵ, pp. 551-590, Springer, 1958.
133. D. Broek, Elementary Engineering Fracture Mechanics, 4th revised ed., Kluwer Academic Publishers, 1991.
134. J. W. Hutchinson, and Z. Suo, “Mixed Mode Cracking in Layered Materials,” Advances in Applied Mechanics, Vol. 29, pp. 63-191, 1992.
135. J. Dundurs, “Edge-Bonded Dissimilar orthogonal Elastic Wedges,” ASME Transaction on Journal of Applied Mechanics, Vol. 36, pp. 650-652, 1969.
136. J. R. Rice, “Elastic Fracture Mechanics Concepts for Interfacial Cracks,” ASME Transaction on Journal of Applied Mechanics, Vol. 55, No. 1, pp. 98-103, Mar. 1988.
137. B. M. Malyshev, and R. L. Salganik, “The Strength of Adhesive Joints Using the Theory of Cracks,” International Journal Fracture. Mechanics, Vol. 5, pp. 114-128, 1965.
138. S. Liu, Y. Mei, and T. Y. Wu, “Bimaterial Interfacial Crack Growth as a Function of Mode-Mixity,” IEEE Transactions on Components Hybrid and Manufacturing Technology, Vol. 18, No. 3, pp. 618-626, Sep. 1995.
139. J. W. Hutchinson, M. E. Mear, and J. R. Rice, “Crack Paralleling an Interface Between Dissimilar Materials,” ASME Transaction on Journal of Applied Mechanics, Vol. 54, No. 4, pp. 828-832, Dec. 1987.
140. A. G. Evans, B. J. Dalgleish, M. He, and J. W. Hutchinson, “On Crack Path Selection and the Interface Fracture Energy in Bi-Material Systems,” Acta Metallurgica, Vol. 37, No. 12, pp. 3249-3254, Dec. 1989.
141. J. R. Rice, “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks,” ASME Transaction on Journal of Applied Mechanics, Vol. 35, pp. 379-386, 1968.
142. J. D. Eshelby, Calculation of Energy Release Rate, in Prospects of Fracture Mechanics, pp. 69-84, Sih, Van Elst, Broek, ed., Noordhoff, 1974.
143. J. K. Knowles, and E. Sternberg, “On a Class of Conservation Laws in Linearized and Finite Elastostatics,” Archive for Rational Mechanics and Analysis, Vol. 44, pp. 187-211, 1972.
144. R. A. Schmidt, G. W. Wilkowski, and M. Mayfield, “The International Piping Integrity Research Group (IPIRG) Program-An Overview,” 11th International Conference on Structural Mechanics in Reactor Technology, paper G23/1, Tpkyo, Japan, 1991.
145. S. Rahman, G. Wilkowski, and F. Brust, “Fracture Analysis of Full-Scale Pipe Experiments on Stainless Steel Flux Welds,” Nuclear Engineering and Design, Vol. 160, No. 1-2, pp. 70-96, Feb. 1996.
146. S. Rahman, “Probabilistic Fracture Mechanics: J-Estimation and Finite Element Methods,” Engineering Fracture Mechanics, Vol. 68, No. 1, pp. 107-125, Jan. 2001.
147. R. Krueger, “The Virtual Crack Closure Technique: History, Approach and Applications,” ICASE, Hampton, Virginia, NASA/CR-2002-211628, ICASE Report No. 2002-10, Apr. 2002.
148. E. F. Rybicki, and M. F. Kanninen, “Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral,” Engineering Fracture Mechanics, Vol. 9, No. 4, pp. 931-938, 1977.
149. I. S. Raju, “Calculation Of Strain-Energy Release Rates With Higher Order And Singular Finite Element,” Engineering Fracture Mechanics, Vol. 28, No. 3, pp. 251-274, 1987.
150. F. G. Buchholz, “Improved Formulae for the FE-Calculation of the Strain Energy Release Rate by the Modified Crack Closure Integral Method,” 4th World Congress on Finite Elements, Interlaken, pp.650-659, 1984.
151. F. G. Buchholz, and B. Meiners, “On the Accuracy of the Modified Crack Closure Integral Method in Combination with Higher Order Finite Elements,” in Accuracy Estimates and Adaptive Refinements in Finite Element Computations, Proceedings of the International Conference, Lisbon, Vol.Ⅰ: Technical University of Lisbon, pp. 131-140, 1984.
152. T. S. Ramamurthy, “Modified Crack Closure Integral Method with Quarter Point Elements,” Mechanics Research Communications, Vol. 13, pp. 179-186, 1986.
153. K. B. Narayana, B. Dattaguru, T. S. Ramamurthy, and K. Vijayakumer, “Modified Crack Closure Integral Using Six-Noded Isoparametric Quadrilateral Singular Elements,” Engineering Fracture Mechanics, Vol. 36, No. 6, pp. 945-955, 1990.
154. K. B. Narayana, and B. Dattaguru, “Certain Aspects Related to Computation by Modified Crack Closure Integral (MCCI),” Engineering Fracture Mechanics, Vol. 55, No. 2, pp. 335-339, Sep. 1996.
155. R. Sethuraman, and S. K. Maiti, “Finite Element Based Computation of Strain Energy Release Rate by Modified Crack Closure Integral,” Engineering Fracture Mechanics, Vol. 30, No. 2, pp. 227-231, 1988.
156. K. N. Shivakumar, P. W. Tan, and J. C. Jr. Newman, “A Virtual Crack-Closure Technique for Calculation Stress Intensity Factors for Cracked Three Dimensional Bodies,” International Journal of Fracture, Vol. 36, No. 3, pp. 43-45, Mar. 1988.
157. I. S. Raju, R. Sistla, and T. Krishnamurthy, “Fracture Mechanics Analyses for Skin Stiffener Debonding,” Engineering Fracture Mechanics, Vol. 54, No. 3, pp. 371-385, Jun. 1996.
158. D. L. Logan, A First Course in the Finite Element Method, Brooks/Cole, 3rd ed., pp. 532-558, 2002.
159. R. D. Cook, D. S. Malkus, and M. E. Plesha, Concepts and Applications of Finite Element Analysis, 3rd ed., pp. 504-505, Wiley, N. Y., 1989.
160. C. T. Peng, C. M. Liu, J. C. Lin, H. C. Cheng, and K. N. Chiang, “Reliability Analysis and Design for the Fine-Pitch Flip Chip BGA Packaging,” IEEE Transactions on Components and Packaging Technologies, Vol. 27, No. 4, pp. 684-693, Dec. 2004.
161. C. T. Peng, K. N. Chiang, T. Ku, and K. Chang, “Design, Fabrication and Comparison of Lead-Free/Eutectic Solder Joint Reliability of Flip Chip Package,” 5th International Conference on Thermal, Mechanical and Thermo-Mechanical Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 149-156, Brussels, Belgium, May 10-12, 2004.
162. J. H. Lau, S. Golwalkar, D. Rice, S. Erasmus, R. Surratt, and P. Boysan, “Experimental and Analytical Studies of 28-pin Thin Small Outline Package (TSOP) Solder-Joint Reliability,” ASME Transactions on Journal of Electronic Packaging, Vol. 114, pp. 169-176, Jun. 1992.
163. J. H. Lau, and S. W. R. Lee, “Effects of Build-up Printed Circuit Board Thickness on the Solder Joint Reliability of a Wafer Level Chip Scale Package (WLCSP),” IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. 25, No. 1, pp. 3-14, Mar. 2002.
164. L. F. Coffin, Jr., “A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal,” ASME Tran., Vol. 76, pp. 931-950, 1954.
165. S. S. Manson, “Mechanics,” Experimental Mechanics, Vol. 5, pp. 193-226, 1965.
166. H. D. Solomon, “Fatigue of 60/40 Solder,” IEEE Transactions on Components and Hybrids and Manufacturing Technology, Vol. 9, No. 4, pp. 423-432, Dec. 1986.
167. D. G. Yang, G. Q. Zhang, L. J. Ernst, J. F. J. Caers, H. J. L. Bressers, and J. Janssen, “Combined Experimental and Numerical Investigation on Flip Chip Solder Fatigue with Cure-Dependent Underfill Properties,” 51st Electronic Components and Technology Conference, pp. 919-924, May 29-Jun. 1, 2001, Orlando, Florida, USA.
168. 蘇朝墩,產品穩健設計,中華民國品質學會,第二版,頁9-36,2000。
169. D. C. Montgomery, 2001, Design and Analysis of Experiments, 5th ed., John Wiley & Sons, pp. 213-270, 2001.
170. G. N. Myers, and D. C. Montgomery, Response surface methodology, 2nd ed. New York: Wiley, 2002.
171. Q. Yu, M. Shiratori, and Y. Ohshima, “A Study of the Effects of BGA Solder Geometry on Fatique Life and Reliability Assessment,” in Proceeding Intersociety Conference on Thermal and Thermomechanical phenomena in Electronic Systems (ITHERM’98), pp. 229-235, 1998.
172. K. A. Brakke, Surface Evolver Manual, version 2.14, the geometry center (1300 S. Second St., Minneapolis, 1999).
173. D. E. Riemer, “Prediction of Temperature Cycling Life for SMT Solder Joints on CTE-Mismatched Substrate,” 40th Electronic Components and Technology Conference, pp. 418-425, May 1990.
174. Z. Suo, “Singularities, Interacting and Cracks in Dissimilar Anisotropic Media,” Philosophical Transactions of the Royal Society, Ser. A, Vol. 427, pp. 331-358, 1990.
175. W. C. Shi, and Z. B. Kuang, “J-Integral of Dissimilar Anisotropic Media,” International Journal of Fracture, Vol. 96, No. 4, pp. L37-L42, 1999.
176. P. G. Charalambides, J. Lund, A. G. Evans, and R. M. McMeeking, “A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces,” ASME Transaction on Journal of Applied Mechanics, Vol. 56, No. 1, pp. 77-82, Mar. 1989.
177. S. Maitrejean, F. Fusalba, M. Patz, V. Jousseaume, and T. Mourier, “Adhesion Studies of Thin Film on Ultra Low K,” 2002 IEEE International Interconnect Technology Conference, pp. 206-208, Jun. 3-5, 2002.
178. P. Leduc, M. Savoye, S. Maitrejean, D. Seevola, V. Jousseaume, and G. Passemard, “Understanding CMP-Induced Delamination in Ultra low-k/Cu Integration,” 2005 IEEE International Interconnect Technology Conference, pp. 209-211, Jun. 6-8, 2005.
179. T. Saitoh, H. Matsuyama, and M. Toya, “Linear Fracture Mechanics Analysis on Growth of Interfacial Delamination in LSI Plastic Packages under Temperature Cyclic Loading,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. 21, No. 4, pp. 422-427, Nov. 1998.
180. S. R. Voleti, N. Chandra, and J. R. Miller, “Global-Local Analysis of Large-Scale Composite Structure Using Finite Element Methods,” Computers and Structures, Vol. 58, No. 3, pp. 453-464, Feb. 1996.
181. R. F. Gibson, Principles of Composite Material Mechanics, McGraw-Hill New-York, 1994.
182. M. G. Pecht, and R. Agarwal, Electronic Packaging Material and Their Properties, CRC Press, New York, 1999.
183. J. W. Choi, and T. S. Oh, “Shear Strength and Aging Characteristics of Sn-Pb and Sn-Pb-Bi Solder Bumps,” 2001 Int’l Symposium on Electronic Materials and Packaging, pp. 433-437.
184. H. Tanie and T. Terasaki, “A New Method for Evaluating Fatigue Life of Micro-Solder Joints in Semiconductor Structures,” 2005 International Electronic Packaging Technical Conference and Exhibition (IPACK2005), Jul. 17-22, 2005, San Francisco CA, USA.