簡易檢索 / 詳目顯示

研究生: 朱凱隆
論文名稱: 壓電式噴墨印相頭內外流場特性之量測研究
Experimental Study of Inside and Outside Flow Fields in PZT PrintHead
指導教授: 劉通敏
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 107
中文關鍵詞: 壓電式噴墨頭微質點影像測速技術
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    噴墨印相技術已經被政府列為2008年之國家重點發展工業技術之一,其應用範圍相當廣泛,例如有機發光顯示器、無版印刷電路之應用與汽機車燃油霧化器等。本文旨在建構具微米解析能力之流場觀測系統與微粒影像測速系統,以定性與定量探討商用噴墨印相頭內、外流場之特性。所建構之定性與定量系統先經由熱氣泡式噴墨液柱變化過程與微直管流速度分佈積分流量獲得精度驗證。然後本文針對現今商用壓電式噴墨印表機所驅動之噴流墨柱與墨滴演化過程以定性化觀察與定量化特徵物理量,選擇壓電式噴墨印相技術,因其可噴印對溫度敏感的高分子墨水,而相關流場量測卻未見於公開文獻中。透過電子顯微鏡(SEM)解析商用噴墨印表頭內部微結構,利用半導體與微機電製造方式製作出矩形微直管、微縮管與微擴管微流道,採用微質點影像測速技術對其內部流場進行定性與定量之研究分析。直型微管道部分,透過管流速度分佈積分流量的方式,加以驗證系統的可信度;漸縮/漸擴微流道部分,探討三種不同入口/出口寬度比值與雷諾數變化對管內速度場的影響;並改變工作流體,以比重5﹪PEO高分子粉末與去離子水混合後之高分子溶液,探討管內流場之變化。數值模擬除先提供先期設計之外,其計算結果並與實驗結果相互驗證比對。相信本研究所獲得之實驗數據,以及所歸納出的相關資訊,應能提供未來自行設計與製作微噴墨印表頭之有用參考依據。


    目 錄 摘要……………………………………………………………………..Ⅰ 致謝……………………………………………………………………..Ⅲ 目錄……………………………………………………………………..Ⅳ 表目錄…………………………………………………………………..Ⅷ 圖目錄…………………………………………………………………..Ⅸ 符號說明……………………………………………………………..ⅩⅣ 第一章 緒論…………………………………………………………1 1.1 研究動機……………………………………………………….1 1.2 文獻回顧……………………………………………………….4 1.2.1 噴墨技術數值與實驗流場觀測…………………………..4 1.2.2 微流道製作………………………………………………..5 1.2.3 質點影像測速技術………………………………………10 1.3 研究目的……………………………………………………12 第二章 微米解析流場觀測實驗系統與方法………………………14 2.1 熱氣泡/壓電式驅動噴墨印相技術………………………….14 2.2 實驗系統基本原理與觀念…………………………………..16 2.3 微米解析噴墨印相技術流場觀測系統……………………..17 2.3.1 精密定位系統……………………………………………17 2.3.2 訊號同步與控制系統……………………………………18 2.3.3 光學影像擷取系統………………………………………18 2.3.4 影像處理與分析…………………………………………19 2.4 研究模型與方法……………………………………………...19 第三章 微米解析質點影像測量速度場系統之建立…………………22 3.1 基本原理與觀念……………………………………………...22 3.2 微質點影像測速系統………………………………………22 3.2.1 光學系統…………………………………………………22 3.2.2 質點顆粒的選用…………………………………………23 3.2.3 影像擷取與同步控制系統………………………………26 3.2.4 影像處理與分析系統……………………………………28 3.3 不確定度分析……………………………………………….31 第四章 微流道系統之建立……………………………………………32 4.1 商用噴墨印表頭內部微結構重現…………………………...32 4.2 微流道製作…………………………………………………...34 4.2.1 玻璃基材微流道…………………………………………35 4.2.2 矽基材微流道模具………………………………………37 4.2.3 高分子材料PDMS微流道………………………………38 4.3 工作流體之選擇……………………………………………...39 4.4 精密注射泵浦循環系統……………………………………...39 第五章 微流道數值方法………………………………………………40 5.1 計算模型尺寸與格點分佈………………………………….40 5.2 基本假設…………………………………………………….41 5.3 統馭方程式………………………………………………….41 5.4 邊界條件與起始條件……………………………………….42 第六章 結果與討論……………………………………………………44 6.1 噴墨印相技術外流場定性觀測……………………………...44 6.1.1熱氣泡驅動外流場觀測………………………………….44 6.1.2壓電式驅動外流場觀測………………………………….45 6.2 不同微流元件內部流場之定性/定量量測分析……………47 6.2.1 直管速度分佈積分流量以驗證系統之可信度…………47 6.2.2 不同入-出口寬度比值之漸縮/漸擴微管道……………48 第七章 結論與未來建議………………………………………………52 7.1 結論………………………………………………………….52 7.2 貢獻………………………………………………………….53 7.3 未來建議…………………………………………………….53 參考文獻……………………………………………………………….55 表………………………………………………………………………..61 圖………………………………………………………………………..68 作者簡介………………………………………………………………107

    參 考 文 獻

    Adrian, R.J., 1991, "Particle-Image Techniques for Experimental Fluid Mechanics, "Annual Review of Fluid Mechanics, Vol.23, pp.261-304.
    Adrian, R. J., 1997, "Dynamic Ranges of Velocity and Spatial Resolution of Particle Image Velocimetry, "Meas. Sci. Tech., Vol. 8, pp.1393-1398.
    Armani, D., Liu, C. Aluru, N., 1998, "Re-configurable Fluid Circuits by PDMS Elastomer Micromachining, " Conference.
    Asai, A., 1987, ”One-Dimensional Model of Bubble Growth and Liquid Flow in Bubble Jet Printers,” Japan Journal of Applied Physics, 26, 1794-1801.
    Asai, A., 1989, ”Application of the Nucleation Theory to the Design of Bubble Jet Printers,” Japan Journal of Applied Physics, 28, 909-915.
    Asai, A., 1991, ”Bubble Dynamics in Boiling Under High Flux Pulse Heating, “ ASME Journal of Heat Transfer, 113, 973-979.
    Asai, A., 1992, “Three-Dimensional Calculation of Bubble Growth and Drop Ejection in a Bubble Jet Printer,” ASME Journal of Fluids Engineering, 114, 638-641.
    Chen, P.H., Peng, H.Y., Liu, H.Y., Chang, S.L., Wu, T.I., Cheng, C.H., 1999, “Pressure Response and Droplet Ejection of a Piezoelectric Inkjet Printhead,” International Journal of Mechanical Sciences, 41, pp. 235-248.
    Chen, J., Wise, K.D., 1995, "A High-Resolution Silicon Monolithic Nozzle Array for Inkjet Printing, " International Conference on Solid-State Sensors and Actuators, pp. 321-324.
    Devasenathipathy, S., Santiago, J.G., Wereley, S.T., Meimhart, C.D., Takehara, K., 2003, "Particle Imaging Techniques for Microfabricated Fluidic Systems, " Exp. in Fluids, Vol. 34, pp. 504-514.
    Guerin, L.J., Bossel, M., Demierre, M., Calmes, S. Renaud, P.h., 1997, "Simple and Low Cost Fabrication of Embedded Microchannels by Using a NEW Thick-Film Photoplastic, " International Conference on Solid-State Sensors and Actuators, Chicago, pp.1419-1422.
    http://www.dantec.dk/
    Hsin-chih, T.Y., 1998, "Fabrication and Cooling Test of High-Aspect-Ratio Electroplated Microchannels, " University of California Mechanical Engineering.
    Kamholz, A.E., Weigl, B.H., Finlayson, B.A., Yager, P., 1999, “Quantitative Analysis of Molecular Interaction in a Microfluidic Channel : The T-Sensor,” American Chemical Society, Analytical Chemistry, Vol. 71, No. 23, pp. 5340-5347.
    Kinoshita, H., Oshima, M., Hong, J.W., Fujii, T., Saga, T., Kobayashi, T., 2002, "PIV Measurement of Pressure- and Electrokinetically-driven Flow in Microchannels, " Optical Technology and Image Processing for Fluids and Solids Diagnostics SPIE-Beijing,
    Kihm, K. D., "Development and Applications of Advanced Flow Visualization Techniques for Microscale Heat and Mass Transport, " Proceedings of PSFVIP-4, June 3-5, 2003.
    Kim, M. J., Kim, H. J. and Kihm, K. D., "Micro-Scale PIV for Electroosmotic Flow Measurement, " Proceedings of PSFVIP-3 March 18-21, 2001, Maui, Hawaii, U.S.A.
    Lee, et al., ”Spot Size Modulation Using Multiple Pulse Resonance Drop Ejection,” U.S. Patent 4, 513, 299, Issue 6/27/1950.
    Mallik, A.K., Peterson, G.P., Weichold, M.H., 1995, "Fabrication of Vapor-Depositied Micro Heat Pipe Arrays as an Integral Part of Semiconductor Devices, " J. of Microelecttomec. Sys., Vol.4, No.3, pp.119-131.
    Man, P.F., Jones, D.K., Mastrangelo, C.H., 1997, "Microfluidic Plastic Capillaries on Silicon Substrates:A New Inexpensive Technology for Bioanalysis Chips, " Proc. IEEE MEMS Workshop, Nagoya, Japan, pp.311-316.
    Meinhart, C. D., Prasad, A. K. and Adrian, R. J., 1993, "A Parallel Digital Processor System for Particle Image Velocimetry, " Meas. Sci. Tech., Vol. 4, PP. 619-626.
    Meimhart, C.D., Wereley, S.T., Santiago, J.G., 1999, "Micron-Resolution Velocimetry Techniques, " Conference.
    Meinhart, C.D., Wereley, S.T., Santiago, J.G., 1999, "PIV Measurements of a Microchannel Flow, " Exp. in Fluids, Vol. 27, pp. 414-419.
    Meinhart, C.D., Wereley, S.T., Gray, M H B, 2000, " Volume Illumination for Two-dimensional Particle Image Velocimetry, " Mea. Sci. Tech., Vol. 11, pp. 809-814.
    Meinhart, C.D., Zhang H., 2000, " The Flow Structure inside a Microfabricated Inkjet Printhead, " Journal of MEMS, Vol. 9, No.1.
    Meinhart, C. D., Wereley, S. T. and Santiago, J. G., 2000, "A PIV Algorithm for Estimating Time-Averaged Velocity Fields, " Journal of Fluids Engineering, Vol. 122, pp. 285-289.
    Mielnik, M. M. and Saetran, L. R., 2003, " Micro-PIV Investigation of a Sinusoidal Crossflow Microfiltration Module, " First International Conference on Microchannels and Minichannels, April 24-25.
    Okuda, R., Sugii, Y. and O kamoto, K., 2003 " Velocity Measurement of Blood Flow in a Microtube Using Micro PIV System, " Proceedings of PSFVIP-4, June 3-5.
    Papautsky, I., Frazier, A.B., Swerdlow, H., 1997, " A Low Temperature IC Compatible Process for Fabricating Surface Micromachined Metallic Microchannels, " Proc. IEEE MEMS Workshop, Nagoya, Japan, pp.317-322.
    Prasad, A. K., Adrian, R. J., Landreth, C. C. and Offutt, P. W., 1992, "Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation, " Exp. in Fluids, Vol. 13, pp. 105-116.
    Ryu, K.S., Liu, C., 2001, "Precision Patterning of PDMS Thin Films : A New Fabrication Method and its Application, " Conference.
    Santiago, J.G., Wereley, S.T., Meinhart, C.D., Beebe, D.J., Adrian, R.J., 1998, "A Particle Image Velocimetry System for Microfluidics," Exp. in Fluids, Vol. 25, pp. 316-319.
    Sato, Y., Irisawa, G., Ishizuka, M., Hishida, K., Maeda, M., 2003, "Visualization of Convective Mixing in Microchannel by Fluorescence Imaning, "Mea. Sci. and Tec, Vol. 14, pp. 114-121.
    Schomburg, W. K. et al., 1994, " Microfluidic Components in LIGA Technique, " J. Micromech. Microeng., Vol. 4, pp.186-191.
    Stone, S. W., Meinhart, C. D. and Wereley, S. T, 2002, "A Microfluidic-based Nanoscope, " Exp. in Fluids, Vol. 33, pp. 613-619.
    Sugii, Y., Okamoto, K., Hibara, A., Tokeshi, M. and Kitamori, T., 2003, "Stabilization of interface between two liquid phases on a microchip by means of micro PIV technique, "Proceedings of PSFVIP-4, June 3-5.
    Terry, S.C., Jerman, J.H., Angell, J.B., 1979, IEEE Trans Electron. Device, ED-26, 1880, pp. 176-183.
    Tian, J. D. and Qiu, H. H., 2002, " Eliminating Background Noise Effect in Micro-resolution Particle Image Velocimetry, "Applied Optics, Vol. 41, No.32, pp. 6849-6857.
    Tretheway, D. C., Liu, X. and Meimhart, C. D., 2002, "Analysis of Slip Flow in Microchannels, " Conference.
    Tretheway, D. C., and Meimhart, C. D., 2002, " Apparent Fluid Slip at Hydrophobic Microchannel Walls, " Physics of Fluids, Vol. 14, No.3, pp. 9-12.
    Tseng, F.G., Kim, C.J., Ho, C.M., 1998, ” A Novel Microinjector with Virtual Chamber Neck,” IEEE Workshop on MEMS, 11th, pp. 25-29.
    Westerweel, J., 1997, " Fundamentals of Digital Particle Image Velocimetry, " Meas. Sci. Tech., Vol. 8, PP. 1379-1392.
    陳文成,1997,”熱氣泡噴墨頭噴出墨滴串發展之過程,”中國機械工程學會第14屆學術研討會論文集, 70-77.
    劉欣怡,彭新亞,陳炳輝,張所鋐,伍次寅,鄭江河,1997,”壓電噴墨印表頭墨滴成型過程之觀測,”台中市, 第二十一屆全國機械工程學術研討會論文集, pp.71-78.
    杜彬湧, 鄭友仁, 2002, “壓電式微型噴油泵浦之設計、製作與性能探討,”國立中正大學機械工程研究所碩士論文。
    方昱仁, 張所鋐, 2002, “單體單噴孔壓電致動式噴液裝置設計與製造,” 國立台灣大學機械工程學系研究所碩士論文。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE