研究生: |
朱世賢 Chu, Shih-Hsien |
---|---|
論文名稱: |
通訊波段窄頻雙光子的產生與量測 Generation and measurement of narrowband biphotons at telecommunication wavelength |
指導教授: |
褚志崧
Chuu, Chih-Sung |
口試委員: |
王立邦
Wang, Li-Bang 施宙聰 Shy, Jow-Tsong |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 1550 、窄頻 、單頻 、通訊 、量子 、雙光子光源 |
外文關鍵詞: | 1550nm, narrow band, single mode, telecommunication, quantum, biphoton source |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
我們用775nm高斯光束打入單晶週期性極化KTP非線性晶體,經自發輻射的方式生成通訊波段1550nm的光源。此晶體兩邊鍍上對1550nm的高反射鍍膜,使得晶體有如空腔般的特性,讓1550nm光源得以在晶體內共振。此方法除了可以使得輸出光源為單一頻率,也大幅降低了輸出光源的頻寬至3MHz。除此之外,晶體的輸出端也鍍上了對pump波長的高反射膜,使得pump光會依原光路返回而使得轉換效率增加,並且使得晶體內更難有其他頻率模態產生。
在確認古典光—光學參量震盪器—的各種性質後,我們降低pump光強度低過其閥值約3mW,希望使得一定的短時間內只會輸出一對經SPDC產生的雙光子signal與idler。接著用單光子偵測器去討論此雙光子在時域上的二次強度關聯函數,藉此得到雙光子的波函數在時域上寬度長達200ns-300ns。時域較寬的波函數得以在實際應用上附加訊號在上面或是用現有儀器在時間上做操控。
我們並計算波函數在頻域上的頻寬約為2.5MHz,其與古典光測量結果相近。我們測量到並運算出雙光子產生率為3800/(s*mW),而在考慮所有光纖、濾波片以及偵測器等等損失的效率後,計算出實際雙光子產生率至少為194000/(s*mW)。接著應用雙重反關聯參數的方法分析二次強度關聯函數去討論雜訊的影響。
藉由Hanbury-Brown and Twiss實驗測量出我們的系統在pump為400µW以下可以成為一個好的單光子源。並且嘗試用電光調製器調製pump光訊號,試圖間接調製產生的單光子波函數,進而影響二次強度關聯函數。
Abstract
We use 775nm gaussian beam to pump monolithic periodically poled KTP crystal(PPKTP) to generate 1550nm light source via spontaneous parametric down conversion(SPDC) process. The 1550nm light source is able to oscillate in the crystal because we deposit high-reflection coatings on both sides of the crystal at 1550nm so that our specifically designed crystal performs just like optical cavity; therefore, the bandwidth of output 1550nm light is reduced significantly to 3MHz. In addition, we also deposit high-reflection coating at 775 nm on the end face of the crystal so that the pump will doubly pass the crystal, which will increase the conversion efficiency of SPDC process and suppress the generation of other frequency modes.
After investigating various properties of classical light (optical parametric oscillation, OPO), we reduce pump power to 3mW below threshold. By doing this, only a pair of bi-photon can be generated through SPDC process in a short time. Then, we apply single photon detection module(SPDM) to get second-order intensity correlation function in time domain . As a result, we find that the width of bi-photon wavefunction in time domain is up to 200ns-300ns in our system. In practical application, the photon with broad wavefunction in time domain can be attached information easily or even be manipulated by equipment.
By analyzing function, the bandwidth of wavefunction in frequency domain is about 2.5MHz that is really closed to the result of what we get in OPO. Our detected bi-photon generation rate is 3800/(s*mW). In consideration of all the loss such as fibers, filters and the low detection efficiency of 1550nm SPDM, bi-photon generation rate is calculated to be at least 194000/(s*mW). Then, using two-fold anti-correlation parameter to analyze second-order intensity correlation function to discuss the effect of the noise.
Via Hanbury-Brown and Twiss experiment, it can be assured that our system can serve as a nice single photon source when pump power is under 400µW. After that, we use electro-optical modulator to manipulate our pump to endeavor to tune the wavefunction of single photon indirectly. By this way, we expect it may further affect the second-order intensity correlation function.
參考文獻
[1] D Stucki, N Gisin, O Guinnard, G Ribordy and H Zbinden, New Journal of Physics4, 41.1–41.8(2002)
[2] Gregoire Ribordy,Jurgen Brendel,Jean-Daniel Gautier, Nicolas Gisin, and Hugo Zbinden, Phys. Rev. A 63, 012309 (2000)
[3] Valerio Scarani, Helle Bechmann-Pasquinucci, Nicolas J. Cerf, Miloslav Dušek, Norbert Lütkenhaus, and Momtchil Peev, Rev. Mod. Phys. 81, 1301 (2009)
[4] Shengwang Du, Jianming Wen, Chinmay Belthangady, Phys. Rev. A 79, 043811 (2009)
[5] J. F. Chen, Shanchao Zhang, Hui Yan, M. M. T. Loy, G.K. L. Wong, and
Shengwang Du, Phys. Rev. Lett. 104, 183604 (2010)
[6]Robert W.Boyd, Nonlinear Optics third edition
[7] S. E. Harris et al, Research Studies on Photons and Biphotions(2013)
[8]J.A. Armstong et al, Phys. Rev. 127, 1918(1962)
[9] C.-S. Chuu and S. Du, Invited book chapter in Engineering the Atom-Photon
Interaction, edited by A. Predojevic and M. W. Mitchell, Springer International
Publishing (2015)
[10] C.-S. Chuu ,ABCD Formulism for Spontaneous Parametric Down Conversion
[11] Chih-Sung Chuu, G. Y. Yin, and S. E. Harris, App. Phys. Lett.101, 051108
(2012)
[12]Mark Fox, Quantum Optics(2006)
[13] George Greenstein,Arthur Zajonc, The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics second editon(2006)
[14] E. Bocquillon et al, Phys. Rev. A 79, 035801 (2009)
[15] David H¨ockel,* Lars Koch, and Oliver Benson, Phys. Rev. A 83, 013802 (2011)
[16] Brett J. Pearson,David P. Jackson, Am. J. Physics 78, No. 5(2010)
[17]張安志, Oscillation Dynamics of a Monolithic Optical Parametric Oscillator(2015)
[18] A. Godard and E. Rosencher, IEEE J. Quantum Electron. 40, 784–790 (2004).
[19]E. Rosencher and C. Fabre, J. Opt. Soc. Amer. B, vol. 19, pp. 1107–1116,(2002).
[20]Guillaume Aoust, Antoine Godard, Myriam Raybaut, Jean-Baptiste Dherbecourt,
Guillaume Canat, and Michel Lefebvre, J.Opt. Soc. Am.B 31, 3113-3122 (2014).
[21]Bierlein, J.D.; Vanherzeele, H. Pontassium titanyl phosphate: Properties and new applications. J. Opt. Soc. Am. B , 6, 622–633(1989).
[22]江健, 1550 nm Monolithic Optical Parametric Oscillator(2014)
[23] MLD780-100S5P Laser Diode Specifications
[24]Thorlabs, Near-IR Ruled Reflective Diffraction Gratings
74
[25]B.E.A Saleh,M.C.Teich, Fundamentals of photonics second edition(2007)
[26]Semrock, 1550/3 nm single-band bandpass filter www.semrock.com
[27] CHEN JIEFEI, Manipulating Classical and Nonclassical Light with Cold
Atoms(2011)
[28] Timothy E. Keller and Morton H. Rubin, Phys. Rev. A 56,No.2 (1997)