簡易檢索 / 詳目顯示

研究生: 李致德
Lee, Chih-Te
論文名稱: 在擬度量空間上兩個弱收縮映射之最佳鄰近點
Best proximity point theorems for two weak cyclic contractions on metric-like spaces
指導教授: 陳啟銘
Chen, Chi-Ming
葉麗琴
Yeh, Li-Chin
口試委員: 陳正忠
Chen, Jeng-Chung
施信宏
Shih, Hsin-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 計算與建模科學研究所
Institute of Computational and Modeling Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 18
中文關鍵詞: 最佳鄰近點理論Meir-Keeler Kannan型態循環映射收縮函數廣義MT-Ciric循環映射φ型態收縮函數擬度量空間
外文關鍵詞: Best proximity point theorem, Cyclic Meir-Keeler-Kannan type contraction, Generalized cyclic MT -Ciric-function type φ-contraction, Metric-like space
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文裡,我們在擬度量空間建立了兩個最佳鄰近點理論:Meir-Keeler Kannan型態的循環映射收縮函數和廣義MT-Ciric循環映射φ型態收縮函數。我們的成果是歸納和改善最近文獻中很多的最佳鄰近點理論。


    In this paper, we establish two best proximity point theorems for the cyclic Meir-Keeler-Kannan type contractions and generalized cyclic MT -Ciric-function type φ-contractions in the setting of metric-like spaces. Our results generalize and improve many recent best proximity
    point theorems in the literature.

    Abstract --- i Acknowledgements --- ii Contents --- iii 1. Introduction and preliminaries --- 1 2. The best proximity point results of cyclic Meir-Keeler-Kannan type contractions --- 4 3. The best proximity point results of generalized cyclic MT-Ciric-function type φ-contractions --- 10 Reference --- 17

    [1] M.A. Al-Thagafi, N. Shahzad, Best proximity sets and equilibrium pairs for a finite
    family of multimaps, Fixed Point Theory Appl., 2008 (2008) Art. ID 457069.
    [2] M.A. Al-Thagafi, N. Shahzad, Best proximity pairs and equilibrium pairs for Kakutani
    multimaps, Nonlinear Anal., 70 (3) (2009) 1209–1216.
    [3] M.A. Al-Thagafi, N. Shahzad, Convergence and existence results for best proximity
    points, Nonlinear Anal., 70 (10) (2009) 3665–3671.
    [4] H. Aydi, A. Felhi, Best proximity points for cyclic Kannan-Chatterjea-Ciric type contractions
    on metric-like spaces, J. Nonlinear Sci. Appl., 9(2016), 2458–2466.
    [5] C. Di Bari, T. Suzuki, C. Vetro, Best proximity points for cyclic Meir-Keeler contractions,
    Nonlinear Anal., 69 (11) (2008) 3790–3794.
    [6] W.-S. Du, On coincidence point and fixed point theorems for nonlinear multivalued
    maps, Topology and Applications, 159(2012), 49–56.
    [7] A. A. Eldred, P. Veeramani, Existence and convergence of best proximity points, J.
    Math. Anal. Appl., 323 (2006) 1001–1006.
    [8] P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Eng., 51 (2000) 3–7.
    [9] S. Karpagam, S. Agrawal, Best proximity point theorems for p-cyclic Meir-Keeler contractions,
    Fixed Point Theory Appl., 2009(2009), Art. ID 197308.
    [10] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28(1969),
    326–329.
    [11] S. Sadiq Basha, P. Veeramani, Best approximations and best proximity pairs, Acta Sci.
    Math. (Szeged) 63(1997), 289–300.
    [12] S. Sadiq Basha, P. Veeramani, Best proximity pair theorems for multifunctions with
    open fibres, J. Approx. Theory 103(2000), 119–129.
    [13] K. Wlodarczyk, R. Plebaniak, A. Banach, Best proximity points for cyclic and noncyclic
    set-valued relatively quasi- asymptotic contractions in uniform spaces, Nonlinear Anal.,
    70 (9) (2009) 3332–3341.

    QR CODE