簡易檢索 / 詳目顯示

研究生: 沙阿密
Sasane Amit Vijay
論文名稱: 高度官能基化之雜環分子的多元金催化合成
Gold-Catalyzed Divergent Synthesis of Highly Functionalized Heterocyclic Molecules
指導教授: 劉瑞雄
Liu, Rai-Shung
口試委員: 侯敦仁
Hou, Duen-Ren
李文泰
Li, Wen-Tai
蔡易州
Tsai, Yi-Chou
黃國柱
Hwang, Kuo-Chu
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 500
中文關鍵詞: 雜環
外文關鍵詞: Heterocyclic
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文討論了利用金和銀所組成的催化劑建立新穎的有機轉化。通過使用這些金屬,可以使用 較為溫和及具選擇性且更加有效的方式從容易獲得之反應物中生成各種具有合成價值的複雜有機 化合物。為了使本論文更易於理解,分為三個章節。
    第一章是使用P(t-Bu)2(o-biphenyl)Au 催化劑催化炔丙醇與硝酮的金催化之氧化反應,從金烯醇鹽 的曼尼希反應中得到雙環環化產物。使用相同的金催化劑,可以讓使用相同的炔丙基胺與硝酮反 應產生不同的氧代芳香基產物。根據我們的DFT 計算表明,使用多電子金催化劑將炔丙醇與硝酮 氧化僅會產生金碳烯,其可以生成金烯醇化合物或氧代芳香基的中間產物,其中烯醇鹽的障壁小 於氧代芳香基化合物。
    第二章介紹了以立體選擇性的金催化重氮吲哚酮和1,2,4-取代二烯合成螺環環丙基吲哚酮。這項工 作的目的是用金催化劑對這些螺環環丙基吲哚酮進行新的重排生成3- (環戊-1,3-二烯-1-甲基) 吲哚 酮。由實驗數據可以排除金催化環丙烷化中的可逆過程。通過DFT 計算,我們假設重排機制牽涉 到形成複雜的金烯醇鹽和1-亞甲基-2,3,4-環戊二烯基陽離子,導致1,5-烯醇鹽移位。
    第三章由 α-重氮酯和α-芳基重氮酮的交叉偶聯實現了3(2H)-呋喃酮衍生物的無催化劑合成。透過 Wolff 重排 α-芳香基重氮酮類熱分解得到酮烯,該重排與α-重氮酯反應通過分子間重氮交聯耦合 形成3(2H)-呋喃酮衍生物。這是一種有效合成具四元立體中心生物活性的3(2H)-呋喃酮衍生物的方法。


    This dissertation discussed the creation of novel synthetic organic transformations utilizing catalysts made of gold and silver. By using these metals, it is possible to create a variety of synthetically valuable complex organic compounds out of easily available substrates in a mild, selective, and efficient manner. In order to make this
    dissertation easier to understand, it is divided into three chapters.
    Chapter one is comprised of gold catalyzed oxidations of propargyl alcohols with nitrones using P(t-Bu)2(o-biphenyl)Au+catalyst, afforded bicyclic annulation products from the Mannich reactions of gold enolates. The same reactions of propargylamines with nitrones using the same gold catalyst gave distinct oxoarylation products. Our DFT calculations indicate that oxidation of propargyl alcohols with nitrones using electron-rich gold catalysts lead only to gold arbenes, which can generate gold enolates or oxoarylation intermediates with enolate species having a barrier smaller than that of oxoarylation species.
    Chapter two is comprised of gold-catalyzed stereoselective synthesis of spirocyclopropyl oxindoles from diazooxindoles and 1,2,4-substituted dienes is described. The aim of this work is to report a novel rearrangement of these spirocyclopropyl oxindoles with gold catalyst to yield 3-(cyclopenta-1,3-dien-1-ylmethyl)oxindoles. Our experimental data exclude a reversible process in the gold-catalyzed cyclopropanation. With DFT-calculations, we postulate a rearrangement
    mechanism involving the formation of complex pairs of gold enolates and 1-methylen-2,3,4-cyclopentadienyl cations, leading to a 1,5-enolate shift.
    Chapter three is comprised of catalyst-free synthesis of 3(2H)-furanone derivatives has been achieved from cross-coupling of α-diazo ester and α-aryldiazo ketones are described. Thermal decomposition of α-aryldiazo ketones gives ketene through Wolff rearrangement which reacts with the α-diazo ester to form 3(2H)-furanone derivatives via intermolecular diazo-cross coupling. This is a useful method for the synthesis of biological active 3(2H)-furanone derivatives, containing a quaternary stereocenter is described.

    TABLE OF CONTENTS Abstract I Acknowledgment IV Table of content VI List of Schemes IX List of Tables XI List of Figures XI List of Publications XIII Abbreviations XIV Chapter 1: Gold-Catalyzed Oxidative Aminocyclizations of Propargyl Alcohols and Propargyl Amines to Form Two Distinct Azacyclic Products: Carbene Formation versus a 3, 3-Sigmatropic Shift of an Initial Intermediate. Introduction 02 Result and Discussion 13 Conclusion 31 Experimental Procedure 32 Spectral Data 37 X-ray Crystallographic Data 61 References 69 1H and 13C NMR Spectra 72 Chapter 2: Gold-Catalyzed Rearrangement of α-Carbonyl Cyclopropanes to Form 3-(Cyclopenta-1,3-dien-1-ylmethyl)oxindoles via a Postulated 1,5-Enolate Shift Introduction 178 Result and Discussion 190 Conclusion 208 Experimental Procedure 208 Spectral Data 219 References 242 X-ray Crystallographic Data 245 1H and 13C NMR Spectra 253 Chapter 3: Catalyst Free Diazo Cross-coupling to Synthesis Biological Active 3(2H)-Furanone derivatives Introduction 352 Result and Discussion 363 Conclusion 377 Experimental Procedure 378 Spectral Data 385 References 400 X-ray Crystallographic Data 403 1H and 13C NMR Spectra 414

    Chapter 1 References
    1) a) E. Aguilar, J. Santamaria, Org. Chem. Front, 2019, 6, 1513–1540. b) L. S. Hegedus and B.C. G. Södeberg, in Transition Metals in the Synthesis of Complex Organic Molecules, 3rd edition, University Science Books, Sausalito, CA, 2010.
    2) Bhunia, S.; Ghosh, P.; Patra, S. R. Gold-catalyzed oxidative alkyne functionalization by N-O/SO/C-O bond oxidants. Adv. Synth. Catal. 2020, 362, 3664−3708.
    3) Reviews N, O-functionalizations of alkynes see: a) H. S.Yeom, S. Shin, Acc. Chem. Res, 2014,47, 966-977; b) D. B. Huple, S. Ghorpade, R. S. Liu, Adv. Synth. Catal. 2016, 358, 1348-1367.
    4) D. J. Gorin, F. D. Toste, Nature, 2007, 446, 395.
    5) R. J. Harris, R. A. Widenhoefer, Chem. Soc. Rev, 2016, 45, 4533. b) Y. Wang, M. E. Muratore, A. M. Echavarren, Chem. Eur. J, 2015, 21, 7332. c) R. Dorel, A. M. Echavarren, J. Org. Chem, 2015, 80, 7321. d) D. Qian, J. Zhang, Chem. Soc. Rev, 2015, 44, 677.
    6) D. Benitez, N. D. Shapiro , E. Tkatchouk , Y. Wang , W. A. Goddard III and F. D. Toste , Nat. Chem., 2009, 1 , 482.
    7) Zhang, L. Acc. Chem. Res. 2014, 47, 877−888.
    8) a) Li, C.-W.; Pati, K.; Lin, G.-Y.; Sohel, S. M. A.; Hung, H.-H.; Liu, R.-S. Angew. Chem., Int. Ed. 2010, 49, 9891–9894. b) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48,7200– 7202.
    9) a) N. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 4160–4161. b) H. S. Yeom, J. E. Lee, S. Shin, Angew. Chem., Int. Ed. 2008, 47, 7040–7043.
    10) H. S Yeom, S. Shin, Acc. Chem, Res. 2014, 47, 966.
    11) a) J. Xiao, X. Li, Angew, Chem. Int. Ed. 2011, 50, 7226; b) L. Zhang, Acc. Chem, Res. 2014, 47, 877. c) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc. Rev. 2016, 45, 4448. d) D.Huple, S. Ghorpade, R.-S. Liu, Adv. Soc. Synth. Catal. 2016, 358, 1348.
    12) R. L. Sahani, R.-S. Liu, ACS Catal. 2019, 9, 5890−5896.
    13) Prins-type reactions: (a) Pastor, I. M.; Yus, M. Curr. Org. Chem. 2007, 11, 925−957. (b) Olier, C.; Kaafarani, M.; Gastaldi, S.; Bertrand, M. P. Tetrahedron 2010, 66, 413−445. (c) Han, X.; Peh, G.; Floreancig, P. E. Eur. J. Org. Chem. 2013, 2013, 1193−1208. d) Reddy, B. V. S.; Anjum, S. R.; Sridhar, R. RSC Adv. 2016, 6, 75133−75137. e) Lalli, C.; Weghe, P. V. D. Chem. Commun. 2014, 50, 7495−7498.
    14) For metal-catalyzed (3 + 3)-annulations of nitrones, see: (a) Xu, X.; Doyle, M. P. Acc. Chem. Res. 2014, 47, 1396−1405. (b) Cordier, M.; Archambeau, A. Org. Lett. 2018, 20, 2265−2268. (c) Shintani, R.; Park, S.; Duan, W.-L.; Hayashi, T. Angew. Chem., Int. Ed. 2007, 46,
    5901−5903.
    15) D. Qian, J. Zhang, Chem. Eur. J. 2013, 19, 6984–6988.
    16) H.-S. Yeom, Y. Lee, J. Jeong, E. So, S. Hwang, J.-E. Lee, S. S Lee, S. Shin, Angew. Chem., Int. Ed. 2010, 49, 1611-1614.
    17) L. Ye, L. Cui, G. Zhang, L. Zhang, J. Am. Chem. Soc. 2010, 132, 3258-3259.
    18) L. Ye, W. He, L. Zhang, J. Am. Chem. Soc. 2010, 132, 8550-8551.
    19) H. Wei, Su. Zhou, L. Qiu, Y. Qian, W. Hu, X. Xu, Adv. Synth.Catal. 2019, 361, 3569–3574.
    20) H. Wei, M. Bao, K. Dong, L. Qiu, B. Wu, W. Hu, X. Xu, Angew.Chem.Int.Ed. 2018, 57, 17200–17204.
    21) B. Lu, Y. Li, Y. Wang, D. H. Aue, Y. Luo, L. Zhang, J. Am. Chem. Soc. 2013, 135, 8512-8524.
    22) Reviews for gold carbenes: a) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180−3211; b) L. Zhang, Acc. Chem. Res. 2014, 47, 877−888; c) H.-S.Yeom, S. Shin, Acc. Chem. Res. 2014, 47, 966−977; d) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc. Rev. 2016, 45, 4448−4458; e)Y. Wang, M. E. Muratore, A. M. Echavarren, Chem. Eur. J. 2015, 21, 7332–7339; f) J. Xiao, X. Li, Angew. Chem. Int. Ed. 2011, 50, 7226–7236; g) L. Ye, X-Q. Zhu, R. L. Sahani, Y. Xu, P-C. Qian, R.-S. Liu, Chem. Rev. 2020, DOI: 10.1021/acs.chemrev.0c00348.
    23) For the generation of α-oxo gold carbenes with N-O oxides; see selected examples: a) L. Ye, L. Cui, G. Zhang, L. Zhang, J. Am. Chem. Soc. 2010, 132, 3258−3259; b) L. Ye, W. He, L. Zhang, J. Am. Chem. Soc.2010, 132, 8550−8551; (c) Y. Wang, Z. Zheng and L. Zhang, J. Am. Chem.Soc., 2015, 137, 5316–5319; (d) G. Zhang, Y. Peng, L. Cui and L. Zhang, Angew. Chem., Int.Ed., 2009, 48, 3112–3115; (e) Y. Wang, K. Ji, S. Lan, L. Zhang, Angew. Chem. 2012, 124, 1951–1954; (f) B. Lu, C. Li, L. Zhang, J. Am. Chem. Soc., 2010, 132, 14070–14072; (g) B. S.
    Kale, R. S. Liu, Org. Lett. 2019, 21, 8434−8438; (h) A. P. Jadhav, S. Bhunia, H.-Yi. Liao, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 1769–1771; (i) C. Shu, L. Li, Y.-F. Yu, S. Jiang and L.-W. Ye, Chem. Commun., 2014, 50, 2522–2525; (j) W. E. Brenzovich, Jr., D. Benitez, A. D. Lackner, H. P. Shunatona, E. Tkatchouk, W. A. Goddard III and F. D. Toste, Angew. Chem.,Int. Ed., 2010, 49, 5519–5522; (k) T. Wang, S. Shi, P. Daniel, E. Rettenmeier, M. Rudolph, F.Rominger, A. S. K. Hashmi. Chem. Eur. J. 2014, 20, 292–296; (l) A. S. K. Hashmi, T. Wang, S. Shi, M. Rudolph. J. Org. Chem. 2012, 77, 7761−7767; (m) A. S. Hashmi, M. Bührle, R.Salathé, J. Bats, Adv. Synth. Catal. 2008, 350, 2059–2064; (n) A. S. K. Hashmi, T. M. Frost and J. W. Bats, J. Am. Chem. Soc., 2000, 122, 11553–11554; (o) A. S. K. Hashmi, M. C. Blanco, D. Fischer and J. W. Bats, Eur. J. Org. Chem. 2006, 1387–1389; (p) H. Jin, B. Tian, X. Song, J.Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem., Int. Ed., 2016, 55, 12688– 12692; q) Y. Zheng, J. Zhang, X. Cheng, X. Xu, L. Zhang, Angew. Chem. Int. Ed. 2019, 58, 5241–5245; r) C. Shu, C.-Y.Shi, Q. Sun, B. Zhou, T. -Y.Li, Q. He, X. Lu, R.-S. Liu, L.-W. Ye, ACS Catal. 2019, 9,1019 –1025. s) J.-M. Yang, Y.-T. Zhao, Z.-Q. Li, X.-S. Gu, S.-F. Zhu, Q.- L. Zhou, ACS Catal. 2018, 8, 7351–7355.
    24) D. B. Huple, S. Ghorpade, R.-S. Liu, Adv. Synth. Catal. 2016, 358, 1348−1367.
    25) a) A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S. N. Karad, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 15372–15375; b) Y.-C. Hsu, S.-A. Hsieh, P.-H. Li, R.-S. Liu, Chem. Commun.2018, 54, 2114-2117.
    26) a) R. L. Sahani, M. D. Patil, S. B. Wagh, R.-S. Liu, Angew. Chem., Int. Ed. 2018, 57, 14878−14882; (b) H. Wei, M. Bao, K. Dong, L. Qiu, B. Wu, W. Hu, X. Xu, Angew. Chem., Int. Ed. 2018, 57, 17200−17204.
    27) a) B. Sabyasachi, J-C. Chang, R.-S Liu, Org Lett 2012,14, 5522-5525; b) A. B. Cuenca, S. Montserrat, K. M. Hossain, G. Mancha, A. Lledos, M.-S. Mercedes, G. Ujaque, G. Asensio,Org. Lett. 2009, 11, 4906-4909; c) C.-W. Li, K. Pati, G. Y. Lin, S. M. A. Sohel, H. H. Hung, R.-S. Liu, Angew. Chem. Int. Ed. 2010, 49, 9891-9894; d) Y. Wang, L. Ye, L. Zhang, Chem. Commun. 2011, 47, 7815-7817.
    28) For ligand effects in gold catalysis, see selected review: a) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351-3378.
    29) a) S. Kramer, F. Gagosz, In Gold Catalysis: An Homogeneous Approach” F. D. Toste and V. Michellet Eds, chapter 1, pp 1-50, Imperial College Press, 2014; b) P. Klahn, S. F. Kirsh, Chem..Cat. Chem. 2011, 3, 649-652; c) M. R. Luzung, P. Mauleon, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 12402-12403; d) I. Alonso, B. Trillo, F. López, S. Montserrat, G. Ujaque, L. Castedo, A. Lledós, J. L. Mascareňas, J. Am. Chem. Soc. 2009, 131, 13020-13030; e) I. Alonso,
    H. Faustino, F. Lopez, J. L. Mascareňas, Angew. Chem., Int. Ed. 2011, 50, 11496−11500. f) C.- D. Wang, Y.-F. Hsieh, R.-S. Liu, Adv. Synth. Catal., 2014, 356, 144-152.
    30) Crystallographic data of compounds 1-3l, 1-5f, 1-5l and 1-6a were deposited in Cambridge Crystallographic Data Center: 1-3l (CCDC 2012689), 1-5f (CCDC 2013824), 1-5l (CCDC 2023003), 1-6a (CCDC 2013420).
    31) The geometry optimizations and zero-point vibrational energy (ZPVE) were carried out using the B3LYP-D3 functional with the LANL2DZ basis set for Au and the 6-31G** basis set for the other atoms
    (denoted as LACVP**). In order to obtain a more accurate electronic energy, we performed singlepoint energy calculations based on the same functional, but using a larger basis set, where Au was described with LANL2TZ and the other atoms were described with the 6-311++G**basis set. Solvation energies were calculated using the CPCM implicit solvation model. The solvation calculations used the B3LYP/LACVP** level of theory and the gas-phase optimized structures. All
    alculations were performed using the Gaussian09 package.
    32) D. Vasu, R.-S. Liu, Chem. Eur. J. 2012, 18, 13638-13641; (b) M. M.-C. Lo, G. C. Fu, J. Am. Chem. Soc., 2002, 124, 4572;(c) D. Vasu, R.-S. Liu, Chem. Eur. J. 2012, 18, 13638-13641; (b) M. M.-C. Lo, G. C.
    Fu, J. Am. Chem. Soc., 2002, 124, 4572.
    33) L.Ye, W. He, L. Zhang, Angew. Chem. 2011, 123, 3294 –3297.

    Chapter 2: References
    1) Small Ring Compounds in Organic Synthesis VI; de Meijere, A., Ed.; Topics in Current Chemistry, Vol. 207; Springer: Berlin, 2000; DOI:10.1007/3-540-48255-5.
    2) The Chemistry of the Cyclopropyl Group; Rapport, Z., Ed.; Patai’s Chemistry of Functional Groups; S Patai,., Series Ed.; Wiley & Sons: New York, 1987; DOI: 10.1002/0470023449.
    3) Carbocyclic Three-Membered Ring Compounds: Cyclopropanes, Transformations; Houblen-Weyl Methods of Organic Chemistry, Vol. E17c; Thieme: Stuttgart, Germany, 1997.
    4) Staudinger, H.; Ruzicka, L.. Helv. Chim. Acta 1924, 7, 177−201.
    5) Wessjohann, L. A.; Brandt, W.; Thiemann, T. Biosynthesis and
    6) metabolism of cyclopropane rings in natural compounds. Chem. Rev. 2003, 103, 1625−1648.
    7) Faust, R.. Angew. Chem., Int. Ed. 2001, 40, 2251−2253.
    8) For a review of stereoselective cyclopropanation reactions, see Lebel, H.; Marcoux, J. F.; Molinaro, C.; Charette, A. B. Stereoselective cyclopropanation reactions. Chem. Rev. 2003,
    103, 977−1050.
    9) a) H. E. Simmons, R. D. Smith, J. Am. Chem. Soc. 1958, 80, 5323−5324. b) H. E. Simmons, R. D. Smith, J. Am. Chem. Soc. 1959, 81, 4256−4264.
    10) O. G. Kulinkovich, S. V. Sviridov, D. A. Vasilevskii, T. S. Pritytskaya, Zh. Org. Khim. 1989, 25, 2244−2245.
    11) a) A. Geuther, Ann. Chem. 1862, 123, 121−122. b) W. V. Doering, A. K. Hoffmann, J. Am. Chem. Soc. 1954, 76, 6162−6165.
    12) H. Strickler, J. B. Davis, G. Ohloff, Helv. Chim. Acta 1976, 59, 1328−1332.
    13) a) G.Maas, Angew. Chem.,Int. Ed. 2009, 48, 8186−8195. b) B. Morandi, B. B. Mariampillai, B. E. M. Carreira, Angew. Chem., Int. Ed. 2011, 50, 1101−1104.
    14) M.P. Doyle, D.C. Forbes, Chem. Rev. 98, 911–936 (1998)
    15) H.M.L. Davies, J.R. Denton, Chem. Soc. Rev. 38, 3061–3071 (2009)
    16) M.P. Doyle, J. Am. Chem. Soc. 86, 919–939 (1986)
    17) A. Fedorov, M.-E. Moret and P. Chen, J. Am. Chem. Soc.,2008, 130, 8880–8881.
    18) J. B. Cloke, J. Am. Chem. Soc. 1929, 51, 1174-1187.
    19) C. L.Wilson, J. Am. Chem. Soc. 1947, 69, 3002-3004.
    20) N. Neureiter, J. Org. Chem. 1959, 24, 2044-2046.
    21) C. G. Overberger, A.E. Borchert, J. Am, Chem.Soc.1960,82, 1007-1008.
    22) (a) H. M. L. Davies, M. G. Coleman, D. L. Ventura, Org. Lett. 2007, 9, 4971-4974; (b) J. F.Briones, H. M. L. Davies, J. Am. Chem. Soc. 2012, 134, 11916-11919; (c) Z. Cao, X. Wang, C. Tan,; X. Zhao, J. Zhou, K. Ding, J. Am. Chem. Soc. 2013, 135, 8197-8200; (d) H. Xu, Y. P. Li, Y. Cai, G. P. Wang, S. F. Zhu, Q. L. Zhou, J. Am. Chem. Soc. 2017, 139, 7697-7700; (e) M. Garbo, C. Besnard, L. Guénée, C. Mazet, ACS Catal. 2020, 10, 9604- 243 9611. (f) B. Wei, J. C. Sharland, P. Lin, S. M. Wilkerson-Hill, F. A. Fullilove, S. McKinnon, D. G. Blackmond, H. M. L. Davies, ACS Catal. 2020, 10 (2), 1161-1170.
    23) L. Xia, Y. R. Lee, Adv. Synth. Catal. 2013, 355, 2361-2374.
    24) C. N. Chen, W. M. Cheng, J. K. Wang, T. H. Chao, M. J. Cheng, R.–S. Liu, Angew. Chem., Int. Ed. 2021, 60, 4479−4484
    25) Z. –Y. Cao, F. Zhou, Y. –H. Yu, J. Zhou, Org. Lett., 2013, 15, 1, 42-45 26) Z.-Y. Cao, Y. Zhang, C.-B. Ji, J. Zhou, Org. Lett. 2011, 13, 6398-6401.27) H. M. L. Davies, P. R. Bruzinski, D. H. Lake, N. Kong, M. J. Fall, J. Am. Chem. Soc. 1996, 118, 6897.
    28) D. Azhagan, B. Gnanaprakasam, E. Suresh, S. Muthusamy, Tetrahedron Letters 51 (2010)5662–5665.
    29) S. Zhao, X. –X. Chen, N. Gao, M. Qian, X. Chen, Chen, J. Org. Chem. 2021, 86, 7131- 7140.
    30) For reviews for catalytic cyclopropanations, see: (a) H. Lebel, J.-F. Marcoux, C. Molinaro, A. B. Charette, Chem. Rev. 2003, 103, 977-1050; (b) H. Pellissier, Tetrahedron 2008, 64, 7041-7095; (c) D. Qian, J. Zhang, Chem. Soc. Rev. 2015, 44, 677-698; (d) W. Wu, Z. Lin,
    H. Jiang, Org. Biomol. Chem. 2018, 16, 7315-7329; (e) M. P. Doyle, D. C. Forbes, Chem.Rev. 1998, 98, 911-936.
    31) For application to synthesis of bioactive molecules, see selected reviews: (a) P. Tang, Y. Qin, Synthesis 2012, 44, 2969-2984; (b) C. Ebner, E. M. Carreira, Chem. Rev. 2017, 117, 11651-11679; (c) T. F. Schneider, J. Kaschel, D. B. Werz, Angew. Chem., Int. Ed. 2014,
    53, 5504-5523; Angew. Chem. 2014, 126, 5608-5628.
    32) (a) G. Ahmed, R. L. Calvo, M. R. Churchill, D. G. Churchill, H. M. L. Davies, J. Org. Chem. 1998, 63, 2641-2645; (b) L. Xia, Y. R. Lee, Adv. Synth. Catal. 2013, 355, 2361−2374.
    33) For Biological active molecules, see: (a) T. Jiang, K. L. Kuhen, K. Wolff, H. Yin, K. Bieza, J. Caldwell, B. Bursulaya, T. Y.-H Wu, Y. He, Bioorg. Med. Chem. Lett. 2006, 16, 2105- 2108; (b) Z.-Y. Cao, J. Zhou, Org. Chem. Front. 2015, 2, 849-858; (c) R. Zhou, C. Yang, Y. Liu, R. Li, Z. He, J. Org. Chem. 2014, 79, 10709-10715; (d) P. B. Sampson, Y. Liu, B. Forrest, G. Cumming, S. W. Li,. N. K. Patel, L. Edwards, R. Laufer, M. Feher, F. Ban, D. E. Awrey, G. Mao, O. Plotnikova, R. Hodgson, I. Beletskaya, J. M. Mason, X. Luo,
    Nadeem, Wei, X. Kiarash, R. Madeira, B.; Huang, P.; Mak, T. W. Pan, G. Pauls, H. V. J. Med. Chem. 2015, 58, 147-169; (e) P. B. Sampson, Y. Liu, N. K. Patel, M. Feher, B. Forrest, S. W. Li, L. Edwards, R. Laufer, Y. Lang, F. Ban, D. E. Awrey, G. Mao, O. Plotnikova, G. Leung, R. Hodgson, J. M. Mason, X. Wei, R. Kiarash, E. Green, W. Qiu, N. Y. Chirgadze, T. W. Mak, G. Pan, H. W. Pauls, J. Med. Chem. 2015, 58, 130-146; (f) R. E. Schwartz,; C.F. Hirsch,; J. P. Spring-er,; D. J. Pettibone,; D. L. Zink, J. Org. Chem. 1987, 52, 3704-3706.
    34)X-ray diffraction data of compounds 2-3i, 2-4a, 2-5a, 2-6a were deposited in Cambridge Crystallographic Data Centre as CCDC, 2046648, 2142825, 2081851 and 2142931,respectively.
    35) Tanpure S.D.; Kou T.-C.; Cheng Mu.-J.; Liu, R.-S ACS Catal. 2022, 12, 1, 536–543
    36) (a) Jadhav P. D.; Lu Xin.; Liu, R.-S. ACS Catal. 2018, 8, 10, 9697–9701. (b) Wieteck M.; Rudolph M.; Rominger F.; Hashmi A. S. K. Chemistry - A European Journal, 2014, 20,49,16331 – 16336 (c) Jason B. B.; Josef R.; Athula B. A. Label Compd Radiopharm 2007,50, 711–715
    37) (a) Chen, C. N.; Cheng, W.-M.; Wang, J.-K.; Chao, T.-H.; Cheng, M.-J.; Liu, R.-S. Angew.Chem. 2021, 133, 4529-4534. (b) Chen, C. N.; Liu, R.-S. Angew. Chem. Int. Ed. 2019, 58,9831-9835.
    38) Reddy A. C.S.; Reddy P. M.; Anbarasana P. Adv. Synth. Catal. 2020, 362, 801 – 806
    39) Singh A.; Raghuwanshi K.; Patel V.K.; Jain D.K.; Veerasamy R.; Dixit A.; Rajak H. Pharmaceutical Chemistry Journal 2017 51, 366–374.

    Chapter 3: References
    1) For selected diazo reviews see (a) D. S. Devas, S. Bhardwaj, R. Sen, D. K. Gopalakrishnan, J. Vaitala, Adv. Synth. Catal. 2022, 364, 1-22; (b) Q. Xiao, Y. Zhang, J. Wang, Acc. Chem. Res. 2013, 46, 236; (c) N. Cheng, M. He, T. Zhou, Y. Zhu, H. Zhang, S. Peng, Synthesis 2021; 53(04): 611-622; (d) Z. H. Zhang, J. B. Wang, Tetrahedron 2008, 64, 6577-6605; (e) A. Ford, H. Miel, A. Ring, C. N. Slattery, A. R. Marguire, M. A. McKervey, Chem. Rev. 2015, 115, 18,9981-10080; (f) Y. Xia, D. Qiu, J. Wang, Chem.Rev. 2017, 117,13810-13889.
    2) C. Grundmann, Justus Liebigs Ann. Chem. 1938, 29, 536.
    3) (a) D. M. Hodgson, D. Angrish, Chem.- Eur. J., 2007, 13, 3470–3479; (b) M. P. Doyle, W. Hu, I. M. Phillips, A. G. Wee, Org. Lett., 2000, 2, 1777–1779; (c) S. Moulin, H. Zhang, S. Raju, C. Bruneau, S. De´rien, Chem.- Eur. J., 2013, 19, 3292-3296; (d) J. Barluenga, L. Riesgo, L. A. Lo ´pez, E. Rubio M. Toma´s, Angew Chem., Int. Ed., 2009, 48, 7569-7572; (e) T. Xiao, M. Mei, Y. He, L. Zhou, Chem.Commun., 2018, 54, 8865-8868; (f) J. Font, F. Serratosa, J. Valls, J. Chem. Soc. Chem. Commun. 1970, 721; (g) J. Barluenga, L. A.
    Lo´pez, O. Lo´ber, M. Toma´s, S. Garci´a-Granda, C. Alvarez-Ru´a, J. Borge, Angew. Chem. Int. Ed. 2001, 40, 3392; Angew. Chem. 2001, 113, 3495.
    4) For Wolff rearrangement review see; (a) W. Kirmse, Eur. J. Org. Chem. 2002, 2193-2256; (b) S. Fuse, Y. Otake, H. Nakamura, Eur. J. Org. Chem. 2017, 6466-6473; (c) X. Ji, Z. Zhang, Y. Wang, Y.Han, H. Peng, F. Li, L. Liu, Org. Chem. Front., 2021, 8, 6916-6922; (d) B. Ma, F.-L. Chen, X.-Y. Xu, Y.-N. Zhang, L.-H. Hu, Adv. Synth. Catal. 2014, 356, 416-420.
    5) L. Gong, M. A. McAllister, T. T. Tidwell, J. Am. Chem. Soc.1991, 113, 6021.
    6) S. Sarkar,; S. Mallick,; P. Kumar,; B. Bandyopadhyay, Phys. Chem. Chem. Phys., 2018, 20, 13437-13447.
    7) J. K. Korobifsyna; W. Nikolaeo, A. Zh. Org. Khim. 1971, 7, 413.
    8) N. J. Turro, W. B. Hammond, Tetrahedron, 1968, 24, 6017–6028.
    9) S. Inagaki, M. Nakazato, N.Fukuda, S. Tamura, T. J. Kawano, J. Org. Chem. 2017, 82,5583-5589.
    10) S. Inagaki, M. Nakazato, N.Fukuda, S. Tamura, T. J. Kawano, J. Org. Chem. 2017, 82,5583-5589.
    11) S. Inagaki, A. Sato, H. Sato, S. Tamura, T. J. Kawano, Tetrahedron Letters 58 (2017) 4872-4875.
    12) M. Egi, K. Azechi, M. Saneto, K. Shimizu, S. Akai, J. Org. Chem. 2010, 75, 2123–2126.
    13) S. F. Kirsch, J. T. Binder, C. Liebert, H. Menz, Angew. Chem. Int. Ed. 2006, 45, 5878-5880.
    14) a)N. T. Patil, H.Wu, Y. Yamamoto, J. Org. Chem. 2005, 70, 4531; b) T. Yao, X. Zhang,R. C. Larock, J. Org. Chem. 2005, 70, 7679.
    15) A. S. K. Hashmi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew. Chem. 2000, 112, 2382;Angew Chem. Int. Ed. 2000, 39, 2285.
    16) a) L. A. Paquette, J. E. Hofferberth, Org. React. 2003, 62, 477; b) Y. Nagao, S. Tanaka, A.Ueki, M. Kumazawa, S. Goto, T. Ooi, S. Sano, M. Shiro, Org. Lett. 2004, 6, 2133.
    17) Y. Liu, M. Liu, S. Guo, H. Tu, Y. Zhou, H. Gao, Org. Lett., 2006, 8, 16.
    18) Q.-Q. Zhou, M. Cheng, Q. Liu, B.-Q. Qu, X.-Y. Huang, F. Yang, K. Ji, Z.-S. Chen, Org.Lett. 2021, 23, 9151− 9156.
    19) S. Bien, A. Gillon, S. Kohen, J.Chem.Soc.,Perkin Trans. 1, 1976, 489-492.
    20) J. H. Hansen, B. T. Parr, P. Pelphrey, Q. Jin, J. Autschbach, H. M. L. Davies, Angew. Chem.,Int. Ed., 2011, 50, 2544-2548.
    21) D. Zhang, G. Xu, D. Ding, C. Zhu, J. Li, J. Sun, Angew. Chem., Int. Ed., 2014, 53, 11070-11074.
    22) G. Xu, C. Zhu, W. Gu, J. Li, J. Sun, Angew. Chem. Int. Ed., 2015, 54, 883-887.
    23) For 3(2H)-furanone, see the review: V. K. Omanakutan, J. John, H. Hopf, Eur. J. Org.Chem. 2021, 163-201.
    24) For biologically active compounds review see; A. Husain, S. A. Khan, F. Iram, M. A. Iqbal,and M. Asif, Eur. J. Med. Chem. 2019, 171, 66-92.
    25) (a) W. Parker, R. A. Raphael, D. I. Wilkinson, J. Chem. Soc. 1958, 3871-3875; (b) Y.Aramaki, K. Chiba, M. Tada, Phytochemistry 1995, 38, 1419–1421; (c) A. B. Petersen, M. H. Rønnest, T. O. Larsen, M. H. Clausen, Chem. Rev. 2014, 114, 12088-12107; (d) S. Chimichi, M. Boccalini, A. Salvador, F. Dall’Acqua, G. Basso, G. Viola, Chem Med Chem 2009, 4, 769-779; (e) M. A. U. Mehedi, A. H. Molla, P. Khondkar, S. Sultana, M. A. Islam, M. A. Rashid, R. Chowdhury, Asian J. Chem., 2010, 22, 2611-2614.
    26) S. A. More, V. A. Sadaphal, T. -C. Kuo, M.-J. Cheng, R.-S. Liu, Chem. Commun., 2022,58, 10064-10067.
    27) Crystallographic data have been deposited at Cambridge Crystallographic Center with 3-4h (CCDC2114370); compound 3-5 (CCDC2203207); compound 3-7a (CCDC2203211); compound 3-8b (CCDC2216484).
    28) For oxa-Nazarov cyclization; see (a) R. B. Dateer, K. Patil, R.-S. Liu, Chem. Commun.,2012, 48, 7200-7202; (b) S. Kramer, T. Skrydstrup, Angew. Chem. Int. Ed. 2012, 51, 4681-4684.
    29) (a) S. A. More, V. A. Sadaphal, T-C Kuo, M-J Cheng, R.-S. Liu, Chem. Commun., 2022, 58,10064–10067; (b) X. L. Yan, N. Zhang, Z. Q. Hao, Z. H. Ma, Z. G. Han, X. Z. Zheng, J. Lin. Polyhedron 147 (2018) 75–79; (c) 1) G. Wu, W. Yin. H. C. Shen, Y. Huang, Green Chem., 2012, 14, 580-585; 2) S. Ghosh, I. Banerjee, S. Baul, Tetrahedron 55 (1999) 11537- 11546; (d) 1) C. N. Chen, W. M. Cheng, J. K. Wang, T. H. Chao, M. J. Cheng, R.-S. Liu,
    Angew. Chem. Int. Ed. 2021, 60, 4479-4484; Angew. Chem. 2021, 133, 4529-4534; 2) J. Vaitala, A. Bayer, K. H. Hopman, Angew. Chem. Int. Ed. 2017, 56, 4277-4281; (e) Q. Lu, S. Mondal, S. Cembellín, F. Glorius, Angew. Chem. Int. Ed. 2018, 57, 10732-10736.
    30) (1) D. M. Carminati, D. Intrieri, A. Caselli, S. Le Gac, B. Boitrel, L. Toma, L. Legnani, E. Gallo, Chem. Eur. J. 2016, 22, 13599-13612; (2) H. S. A. Mandour, Y. Nakagawa, M. Tone, H.Inoue, N. Otog, I. Fujisawa, S. Chanthamath, S. I. Beilstein, J. Org. Chem. 2019, 15, 357–363; (3) J.-H. Chu, X-H. Xu, S-M. Kang, N. Liu, Z-Q. Wu, J. Am. Chem. Soc. 2018, 140, 17773−17781; (4) T. Xiao, P. Peng, Y. Xie, Z.-Y. Wang, L. Zhou, Org. Lett.
    2015, 17, 4332−4335; (5) R. D. Kardile, and R.-S. Liu, Org. Lett. 2019, 21, 6452−6456; (6) A. S. Narode, R-S. Liu, Org. Lett. 2022, 24, 2165−2169; (7) T. Torna, J. Shimokawa, T. Fukuyama, Org. Lett. 2007, 9, 3195–3197; (8) H. Mao, A. Lin, Y. Shi, Z. Mao, X. Zhu, W. Li, H. Hu, Y. Cheng, C. Zhu, Angew. Chem. Int. Ed. 2013, 52, 6288–6292; (9) D. M. Hodgson, D. Angrish, Chem. Eur. J. 2007, 13, 3470-3479. (10) S. P. Bew, P.-A. Ashford, D. U. Bachera, Synthesis 2013, 45, 903–912.

    QR CODE