簡易檢索 / 詳目顯示

研究生: 周府隆
Chou, Fu Lung
論文名稱: 相位矽基液晶全像漂浮影像疊合之研究
Fusion of holographic floating Images generated with phase type liquid crystal on silicon
指導教授: 曹哲之
Tsao, Che-Chih
口試委員: 陳政寰
Chen, Cheng-Huan
徐巍峰
Hsu, Wei-Feng
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 44
中文關鍵詞: 漂浮影像矽基液晶電腦全像發光二極體擴增視角
外文關鍵詞: Floating image, LCoS, CGH, LED, extend viewing angle
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對一漂浮影像系統做不同角度影像疊合之研究,以擴增該系統之視角。該系統是利用相位型矽基液晶(Liquid Crystal on Silicon, LCoS)當作顯示螢幕,使用發光二極體(Light Emitting Diode, LED)當作光源,為一人眼可直接觀看之漂浮影像系統。
    LED非同調光源,不適用於重建全像影像,但可藉由在前端放置一有限孔徑,增加其空間同調性。影像產生是利用全像演算法編碼,將含有不同距離深度的全像影像輸入LCoS 面板上,經調製過的部分同調 LED 光,入射 LCoS 面板重建全像影像。利用凹面鏡架構成像產生實像,在空間中形成漂浮影像,觀看時藉由移動視差(Motion parallax)產生立體感覺。
    由於全像圖的視角由面板上畫素的大小所決定,即該面板之繞射角,本漂浮影像系統所使用的LCoS產生的繞射角太過狹隘,要做成一影像系統十分不足。因此本論文嘗試模擬不同角度之入射光,以利用全像演算法計算特定角度之電腦全像圖,接著再進行不同角度影像的疊合,使在不同角度的觀察者都能夠看到影像,以擴增視角。


    A research of fusion image from a floating imaging system has been studied in this thesis. Liquid crystal on silicon (LCoS) has been used as display screen and the system light source is light emitting diode (LED). However, images can be seen directly from eye without damaging.
    The holographic image cannot be reconstructed by LED because it is not a coherence light source. But the spatial coherence can be enhancing by placing a finite pinhole in front the LED. The image is coding by computer-generated hologram (CGH) method. Load the hologram pattern which contain the information of a three-dimensional image on to LCoS panel, and use modified partial coherence LED source to reconstruct the image on the panel. A concave mirror is re-imaging the virtual image into space. And produce a real image with depth information without occupying any space.
    Since the viewing angle of the hologram, which is the diffraction angle of the panel is determined by the pixel size of the panel. The viewing angle of LCoS panel used in our floating image system is too narrow for an imaging system. Therefore, we attempt to calculate the CGH for a particular angle by simulated incident light in different angle. And extend the viewing angle of LCoS panel by fuse the image comes from different view of angle. So that the observers can see the image from different angle.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究目標 1 第二章 環場及擴增視角技術文獻回顧 2 2.1 漂浮影像系統概述 2 2.2 全像顯示系統 3 2.2.1 數位微型反射鏡(Digital Micromirror Device, DMD) 3 2.2.2 液晶顯示器 4 2.2.3 矽基液晶(Liquid Crystal on Silicon, LCoS) 5 2.2.4 QPI顯示器 6 2.3 擴增視角文獻回顧 7 2.3.1 利用分光鏡接合不同視野 7 2.3.2 利用half zone plate搭配時序擴增視角 8 2.3.3 利用多組光源擴增視角 10 第三章 光學原理 11 3.1 繞射光學 11 3.1.1 繞射光學發展背景 11 3.1.3 純量和向量繞射理論 13 3.1.4 近場和遠場繞射 14 3.2 全像理論 17 3.2.1 全像發展背景 17 3.2.2 全像片種類 19 3.2.3 波前紀錄 20 3.2.4 波前重建 21 3.3 光源傾斜入射 23 3.3.1 利用Rayleigh-Sommerfeld計算傾斜的繞射場 23 3.3.2 利用角頻譜計算傾斜的繞射場 25 3.3.3 利用Fresnel diffraction結合角頻譜計算傾斜的繞射場 25 3.4 畸變修正 27 3.3.1 LCoS造成畸變修正 27 3.3.2 凹面鏡造成畸變修正 28 第四章 實驗結果 31 4.1 設計方法 31 4.2 設計架構及實驗 34 4.2.1 不同深度之影像 35 4.2.3 立體影像 36 4.3 LCoS畸變修正 37 4.4 不同角度入射光 38 第五章 研究成果與結論 40 5.1 畸變修正 40 5.2 不同入射角度之影像 40 5.3 影像疊合 40 第六章 未來工作 41 6.1 演算法優化 41 6.2 不同入射角度之影像改良 41 6.3 弧面接合 41 6.4 多色疊合 41 第七章 參考文獻 42

    [1] T. Yendo, N. Kawakami, and S. Tachi, “Seelinder: the cylindrical light field display,” SIGGRAPH '05: SIGGRAPH 2005 Emerging technologies, 16 (2005).
    [2] S.K. Nayar and V.N. Anand, “3D display using passive optical scatterers,” Computer 40(7), 54–63 (2007).
    [3] H. Saito, H. Kimura , S. Shimada , T. Naemura, J. Kayahara , S. Jarusirisawad ,V. Nozick, H. Ishikaw , T. Murakami , J. Aoki, A. Asano, T. Kimura , M. Kakehata , F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
    [4] D. MacFarlane, “Volumetric three dimensional display,” Appl. Opt. 33(31), 7453–7457 (1994).
    [5] D. Wyatt and L. Wujanto. (2005, Fall) A Volumetric 3D LED display. Available at: http://www.academia.edu/523867/A_Volumetric_3D_LED_display. Accessed 25 August 2015.
    [6] X. Xia, X. Liu, H. Li, Z. Zheng, H. Wang, Y. Peng and W. Shen, “A 360-degree floating 3D display based on light field regeneration,” Opt. Express 21(9), 11237-11247 (2013).
    [7] Opti-gone公司:http://optigone.com/
    [8] F. Yaras, H. Kang, and L. Onural, “Circular holographic video display system, ” Opt. Express 19(10), 9147-9156 (2011).
    [9] Min-Chul Parka, Beom-Ryeol Leeb, Jung-Young Sonc and Oleksii Chernyshovc, “Properties of DMDs for holographic displays,” Journal of Modern Optics, 62:19, pp.1600-1607 (2015).
    [10] Y. Sando, D. Barada and T. Yatagai, "Holographic 3-D display viewable from all horizontal directions by using a single high-speed SLM," Information Optics (WIO), 2015 14th Workshop on, Kyoto, pp. 1-2.(2015)
    [11] Zeng, Z., Zheng, H and Lu, X. et al. Opt Rev 22: 853. doi:10.1007/s10043-015-0109-2. (2015)
    [12] K. Sato, M. Tozuka, K. Takano, and M. Ohki, “Transmission of hologram data and 3D image reconstruction using white LED light,” Proc. SPIE 8281, 82810A. (2012)
    [13] T. Kakue, T. Nishitsuji, T. Kawashima, K. Suzuki, T. Shimobaba, and T. Ito, “Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors,” Sci. Rep. 5, 1–7. (2015)
    [14] El-Ghoroury, H. S., and Alpaslan, Z. Y., “Quantum Photonic Imager (QPI): A New Display Technology and Its Applications”, IDW’14. (2014)
    [15] F. Yaras, H. Kang, and L. Onural, “Circular holographic video display system.” Opt. Express 19(10), 9147-9156. (2011)
    [16] Tomoyuki Mishina, Fumio Okano, and Ichiro Yuyama, "Time-alternating method based on single-sideband holography with half-zone-plate processing for the enlargement of viewing zones," Appl. Opt. 38, 3703-3713. (1999)
    [17] Senoh, T., Mishina, T., Yamamoto, K., Oi, R., and Kurita, T. “Viewing-zone-angle expansion of electronic holography reconstruction system.” Journal of the National Institute of Information and Communications Technology, 57(1-2), 33-46. (2010)
    [18] J.W. Goodman, Introduction to Fourier Optics, Roberts & Company Publishers, Englewood, CO, third edition. (2005)
    [19] R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lecture on Physics, Vol. 1, Basic books, New York, NY, new millennium edition. (2011)
    [20] J Huygens Christiaan, “Traité de la lumière / par.” . (1690)
    [21] B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc., New York, NY, second edition. (2007)
    [22] D. Gabor, “A new microscopic principle,” Nature 161, 777-778. (1948)
    [23] Detlef Leseberg and Christian Frère, "Computer-generated holograms of 3-D objects composed of tilted planar segments," Appl. Opt. 27, 3020-3024. (1988)
    [24] Pan W., Zhu Y., “Fresnel diffraction method with object wave rotation for numerical reconstruction of digital hologram on tilted plane,” Opt. J. Light Electron Opt.. 124, 4328 –4330 (2013).
    [25] Young-Min Kim, Kwang-Mo Jung, and Sung-Wook Min, "Analysis of Off-axis Integral Floating System Using Concave Mirror," J. Opt. Soc. Korea 16, 270-276 (2012)
    [26] 邱博聖,「相位矽基液晶全像漂浮影像系統之分析研究」,國立清華大學動力機械工程學系,碩士論文,中華民國一百零三年

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE