簡易檢索 / 詳目顯示

研究生: 王芳瑜
論文名稱: 利用行人身高資訊改進監控影片中人物辨識的精確度
Improving person re-identification in surveillance video by using human height information
指導教授: 賴尚宏
口試委員: 賴尚宏
鄭芳炫
莊仁輝
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 49
中文關鍵詞: 行人辨識
外文關鍵詞: Person re-identification
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 影片中的人物辨識很具有挑戰性,因為不同的視角、光照的變化、行人偵測與錯誤的前景分割都會影響結果。為了提高影片人物辨識性能,在本文中我們加入行人高度資訊與時間訊息,以提高辨識系統中行人偵測率。
    我們所提出的方法包括以下三步驟:首先採用前景偵測去取得前景區域,並取前幾張畫面中偵測行人,以獲得的行人資訊來建立影片中行人位置與大小關係的模型。其次,我們利用前景配合滑動窗口進行搜尋比對,使用相對應區塊中的色彩與紋理特徵,以及滑動窗口內的行人機率,來提高行人偵測正確率。最後我們比較這些特徵、計算其相似分數,並且根據畫面連續性做分數調整。
    實驗結果顯示:根據行人高度資訊與畫面連續性進行改進後,行人辨識效能將顯著的上升。


    Person re-identification from video is very challenging due to the problems arising from different viewpoints, illumination variations, background subtraction errors or human detection etc. In order to improve the performance of person re-identification in surveillance video, we propose to incorporate the human height information and temporal consistency to enhance the human detection in the person re-identification system.
    The proposed system consists of the following steps: First, we employ background subtraction to obtain the foreground regions and apply the human detector to some beginning frames to estimate the parameters for human height projection onto images. Thus, we can establish the relationship between image positions and the sizes of sliding windows for human detection. Second, we apply the sliding window search on the foreground region by computing the associated color and texture histograms. Thus, the probability of human detection with the SLBP features is computed to improve the human detection accuracy. Finally, we compare the features and compute the similarity score with adjustment based on temporal consistency.
    Experimental results show superior performance on person re-identification by applying the proposed algorithm that utilizes human height information and temporal consistency to some publicly available datasets.

    Contents i List of Figures ii List of Tables iii Chapter 1. Introduction 1 1.1. Problem Description and Motivation 1 1.2. Main Contributions 3 1.3. Thesis Organization 3 Chapter 2. Related Works 4 Chapter 3. Proposed Method 9 3.1. System Overview 9 3.2. Preprocessing Part 12 3.2.1. Background subtractions 12 3.2.2. Auto-detect sliding windows’ size 13 3.3. Re-identification Part 19 3.3.1. Human Region Partition 19 3.3.2. Sliding windows 22 3.3.3. Feature extraction 24 3.3.3.1 HSV color histogram 25 3.3.3.2 LBP texture feature 25 3.3.3.3 SLBP human probability 26 3.3.4. Feature matching 27 3.3.5. Temporal consistency 29 Chapter 4. Experimental Results 31 4.1. Preprocessing step 31 4.2. Re-identification step 33 4.2.1. Foreground information 35 4.2.2. Human height model 36 4.2.3. Temporal consistency 37 4.3. Person re-identification from video 39 4.3.1. Dataset1 40 4.3.2. Dataset2 42 Chapter 5. Conclusion 46 Bibliography 47

    [1] F. Lv, T. Zhao, and R. Nevatia, “Self-Calibration of a Camera from Video of a Walking Human,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 9, pp. 1513-1518, Sept. 2006.
    [2] N. Dalal and B. Triggs , “Histograms of Oriented Gradients for Human Detection,” IEEE Int. Conf. CVPR’05, pp.886- 893.
    [3] Y. Mu, S. Yan, Y. Liu, T. Huang, and B. Zhou, “Discriminative Local Binary Patterns for Human Detection in Personal Album”, IEEE Int. Conf. CVPR’08, pp.1-8.
    [4] G. Jaffre and P. Joly, “Costume: A new feature for automatic video content indexing”, In Proceedings of RIAO, 2004, pp 314 – 325.
    [5] C. Stauffer and W. Grimson , “Adaptive background mixture models for real-time tracking”, In Proceedings CVPR, pp. 246–252, 1999.
    [6] M. Farenzena, L. Bazzani, A. Perina, M. Cristani, and V. Murino , “Person re-identification by symmetry-driven accumulation of local features.” In CVPR, 2010.
    [7] INRIA Person Dataset
    http://pascal.inrialpes.fr/data/human/
    [8] K. Yoon, D. Harwood, and L. Davis , “Appearance-based person recognition using color/path-length profile.” Journal of Visual Communication and Image Representation, 17(3):605–622, 2006.
    [9] T. Gandhi and M. M. Trivedi, “Person tracking and re-identification: Introducing panoramic appearance map (PAM) for feature representation.” Mach. Vision Appl., 18(3):207–220, 2007.
    [10] D-N. Truong Cong, L. Khoudour, C. Achard, and P. Phothisane, “People Re-identification by Means of a Camera Network Using a Graph-based Approach,” Conference on Machine Vision Applications, IAPR, 2009.
    [11] D. Gray and H. Tao. “Viewpoint invariant pedestrian recognition with an ensamble of localized features.” In ECCV, pages 262–275,2008.
    [12] B. Prosser, W. S. Zheng, S. Gong, T. Xiang, “Person Re-Identification by Support Vector Ranking”, Proc of the British Machine Vision Conference, PP 21.1-21.11, 2010.
    [13] D. Vaquero, R. Feris, D. Tran, L. Brown, A. Hampapur, and M. Turk , “Attribute-based people search in surveillance environments.” In: Proceedings of WACV.
    [14] T. Ojala, M. Pietik¨ainen, and M. M¨aenp¨a¨a. “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):971–987, 2002.
    [15] CAVIAR Dataset
    http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
    [16] PETS 2006 Benchmark Data
    http://www.cvg.rdg.ac.uk/PETS2006/data.html
    [17] i-Lids bag and vehicle detection challenge
    http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE