研究生: |
楊博偉 Yang, Po-Wei |
---|---|
論文名稱: |
利用同步輻射X光及中子散射技術研究混合長鏈及短鏈磷脂分子的平板微胞與去氧核醣核酸的交互作用及結構變化 Neutron and Synchrotron X-Ray scattering studies on the structure and Phase Behavior of Mixed Short-Chain/Long-Chain Bicelles and Their Interaction with DNA |
指導教授: |
林滄浪
Tsang-Lang Lin |
口試委員: |
林滄浪
陳信龍 王本誠 鄭有舜 李明道 |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 小角度散射 、圓盤狀微胞 、去氧核醣核酸 、基因治療 |
外文關鍵詞: | SAS, Bicelle, DNA, Gene therapy |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
不同於球狀囊泡型脂質與DNA自組裝形成的複合載體,在這份研究論文中,我們利用小角度散射技術並搭配穿透式電子顯微鏡影像研究探討圓盤狀微胞(Bicelle)與DNA所形成的三維複雜結構。所謂的圓盤狀微胞是由兩種鏈長不同的脂質(長鏈的DPPC與短鏈的diC7PC)在特定混合比例、溫度及濃度條件下自組裝形成的結構;而因為分子形狀不同的緣故,使得DPPC與diC7PC分別組成圓盤狀微胞的中央平面處與側邊曲率較大處。圓盤狀微胞在不同混合比例的結構以及特定比例(DPPC/diC7PC=3/1)隨溫度變化之相行為的基礎研究將先被探討。我們發現在這兩相混合系統中,短鏈的脂質數量增加時,其微胞結構將逐漸從多層球狀微胞漸進變化至小橢圓微胞。當長短脂質混合比為3且溫度由25°C逐漸增加至45°C,側邊的短鏈脂質因高溫而熔進平板區域,這使得單一分散的圓盤狀微胞也轉換至多層狀結構。為了與DNA形成複合體,圓盤狀微胞上的長鏈脂質分別由帶正電的DC-chol以及負電荷DPPG取代成為帶有電荷的平板微胞。首先,正電圓盤狀微胞透過電吸引力與負電DNA 形成的層狀聚集結構大小可藉由改變每一個正電圓盤狀微胞的電荷密度及DNA的長度與濃度來調控。這意味著此種新型的圓盤狀微胞與DNA的複合載體在製備上有尺寸可調整的優勢。由TEM影像可發現數個圓盤狀微胞也將匯聚成一個較大的平面以便於穩定地夾帶DNA於其中。而這樣的複雜體也被證實具有對抗高溫的穩定性。為了降低細胞毒性之緣故,負電荷的圓盤狀微胞也曾被用於與DNA形成複合載體。在足夠量多價陽離子的幫助下,這個類似於正電荷圓盤狀微胞與DNA的多層結構隨著變化不同二價離子的濃度經歷了有趣的相變行為。二價陽離子的凝縮效應顯著的被發現在DNA與負電荷的平板微胞之間。在二價陽離子增加到一臨界濃度時,所有DNA都被侷限在負電圓盤狀微胞的夾層中。若將離子持續增加,多餘的脂質將被釋出與周遭的二價離子形成多層的球狀結構。而其間距被發現隨著離子濃度增加而遞減。我們系統化地合成並搭配結構探討的研究,期盼此新型的圓盤狀微胞與DNA所形成的複合載體能提供新思維並應用於基因治療或藥物輸送的載體設計。
In this present work, the disk like micelles, called bicelle, composed by long-chain lipids (DPPC) and short-chain lipids (diC7PC) at the planar and the rim region, respectively, were used to form the complex with DNA in contrast to conventional vesicle based lipids-DNA complex. The fundamental research on the binary mixture of DPPC/diC7PC was first constructed, including the structure transformation in different mixture ratio and the phase transition upon the increasing temperature in the selected mixing ratio of DPPC/diC7PC=3/1. We then pack the DNA with the charged bicelles by doping cationic DC-chol or anionic DPPG. In the case of using cationic bicelles, self-assembly CB-DNA complexes were found to have the lamellar structure of alternating DNA-membrane. By turning the membrane charge density, the CB-DNA complex exhibited the benefits on its small size and tunable size with a constant DNA packing density. Moreover, it also showed the structure stability against the increased temperature. Subsequently, the DPPG doped bicelles were found to form the complexes with the DNA, called AB-DNA complex, only in the presence of sufficient calcium ions. Such the AB-DNA complex had the alternating membrane-ion-DNA lamellar structure which is similar with the CB-DNA complex. When calcium ions exceed a critical concentration, the DPPG MLV was found to coexistence with the AB-DNA complex since all the DNA was condensed in the AB-DNA complexes. The systematically demonstrated CB-DNA and AB-DNA complexes would provide a new stratagem to design new complexes which have distinct structure from previous vesicle-based lipids-DNA complexes.
1. M. H. Tuszynski, Lancet Neurology, 2002, 1, 51-57.
2. G. Karpati, H. Lochmuller, J. Nalbantoglu and H. Durham, Trends in Neurosciences, 1996, 19, 49-54.
3. D. J. Selkoe, Physiological Reviews, 2001, 81, 741-766.
4. J. A. Roth and R. J. Cristiano, Journal of the National Cancer Institute, 1997, 89, 21-39.
5. W. F. Anderson, Nature, 1998, 392, 25-30.
6. S. Li and L. Huang, Gene Therapy, 2000, 7, 31-34.
7. C. H. Xu, M. H. Sui, J. B. Tang and Y. Q. Shen, Chinese Journal of Polymer Science, 2011, 29, 274-287.
8. D. Luo and W. M. Saltzman, Nature Biotechnology, 2000, 18, 33-37.
9. P. C. Hendrie and D. W. Russell, Molecular Therapy, 2005, 12, 9-17.
10. C. Hofmann, V. Sandig, G. Jennings, M. Rudolph, P. Schlag and M. Strauss, Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 10099-10103.
11. D. P. D. Woldbye, M. Angehagen, C. R. Gotzsche, H. Elbrond-Bek, A. T. Sorensen, S. H. Christiansen, M. V. Olesen, L. Nikitidou, T. V. Hansen, I. Kanter-Schlifke and M. Kokaia, Brain, 2010, 133, 2778-2788.
12. J. C. Weaver, Journal of Cellular Biochemistry, 1993, 51, 426-435.
13. M. Jafari, M. Soltani, S. Naahidi, D. N. Karunaratne and P. Chen, Current Medicinal Chemistry, 2012, 19, 197-208.
14. D. J. Wells, Gene Therapy, 2004, 11, 1363-1369.
15. F. M. Munkonge, D. A. Dean, E. Hillery, U. Griesenbach and E. Alton, Advanced Drug Delivery Reviews, 2003, 55, 749-760.
16. T. Niidome and L. Huang, Gene Therapy, 2002, 9, 1647-1652.
17. C. M. Newman, A. Lawrie, A. F. Brisken and D. C. Cumberland, Echocardiography-a Journal of Cardiovascular Ultrasound and Allied Techniques, 2001, 18, 339-347.
18. M. C. Garnett, Critical Reviews in Therapeutic Drug Carrier Systems, 1999, 16, 147-207.
19. K. Kataoka, A. Harada and Y. Nagasaki, Advanced Drug Delivery Reviews, 2001, 47, 113-131.
20. S. F. Peng, C. J. Su, M. C. Wei, C. Y. Chen, Z. X. Liao, P. W. Lee, H. L. Chen and H. W. Sung, Biomaterials, 2010, 31, 5660-5670.
21. C. J. Su, H. L. Chen, M. C. Wei, S. F. Peng, H. W. Sung and V. A. Ivanov, Biomacromolecules, 2009, 10, 773-783.
22. R. J. Lee and L. Huang, Critical Reviews in Therapeutic Drug Carrier Systems, 1997, 14, 173-206.
23. R. I. Zhdanov, O. V. Podobed and V. V. Vlassov, Bioelectrochemistry, 2002, 58, 53-64.
24. W. J. Choi, J. K. Kim, S. H. Choi, J. S. Park, W. S. Ahn and C. K. Kim, Biomaterials, 2004, 25, 5893-5903.
25. D. Harries, S. May, W. M. Gelbart and A. Ben-Shaul, Biophysical Journal, 1998, 75, 159-173.
26. B. Sternberg, F. L. Sorgi and L. Huang, Febs Letters, 1994, 356, 361-366.
27. F. Liu, J. P. Yang, L. Huang and D. X. Liu, Pharmaceutical Research, 1996, 13, 1856-1860.
28. I. Koltover, T. Salditt, J. O. Radler and C. R. Safinya, Science, 1998, 281, 78-81.
29. J. O. Radler, I. Koltover, T. Salditt and C. R. Safinya, Science, 1997, 275, 810-814.
30. G. C. L. Wong, J. X. Tang, A. Lin, Y. L. Li, P. A. Janmey and C. R. Safinya, Science, 2000, 288, 2035-2039.
31. K. K. Ewert, H. M. Evans, A. Zidovska, N. F. Bouxsein, A. Ahmad and C. R. Safinya, Journal of the American Chemical Society, 2006, 128, 3998-4006.
32. J. O. Radler, I. Koltover, A. Jamieson, T. Salditt and C. R. Safinya, Langmuir, 1998, 14, 4272-4283.
33. I. Koltover, T. Salditt and C. R. Safinya, Biophysical Journal, 1999, 77, 915-924.
34. T. Salditt, I. Koltover, J. O. Radler and C. R. Safinya, Physical Review Letters, 1997, 79, 2582-2585.
35. R. Bruinsma, European Physical Journal B, 1998, 4, 75-88.
36. C. L. Chan, R. N. Majzoub, R. S. Shirazi, K. K. Ewert, Y. J. Chen, K. S. Liang and C. R. Safinya, Biomaterials, 2012, 33, 4928-4935.
37. N. E. Gabriel and M. F. Roberts, Biochemistry, 1986, 25, 2812-2821.
38. M. P. Nieh, V. A. Raghunathan, C. J. Glinka, T. A. Harroun, G. Pabst and J. Katsaras, Langmuir, 2004, 20, 7893-7897.
39. J. Katsaras, T. A. Harroun, J. Pencer and M. P. Nieh, Naturwissenschaften, 2005, 92, 355-366.
40. Y. J. Song, R. M. Dorin, R. M. Garcia, Y. B. Jiang, H. Wang, P. Li, Y. Qiu, F. van Swol, J. E. Miller and J. A. Shelnutt, J. Am. Chem. Soc., 2008, 130, 12602-12603.
41. T. Zemb, M. Dubois, B. Deme and T. Gulik-Krzywicki, Science, 1999, 283, 816-819.
42. C. R. Sanders and R. S. Prosser, Structure, 1998, 6, 1227-1234.
43. T. L. Lin, C. C. Liu, M. F. Roberts and S. H. Chen, Journal of Physical Chemistry, 1991, 95, 6020-6027.
44. M. P. Nieh, C. J. Glinka, S. Krueger, R. S. Prosser and J. Katsaras, Langmuir, 2001, 17, 2629-2638.
45. J. A. Whiles, R. Deems, R. R. Vold and E. A. Dennis, Bioorganic Chem., 2002, 30, 431-442.
46. J. A. Whiles, K. J. Glover, R. R. Vold and E. A. Komives, J. Magn. Reson., 2002, 158, 149-156.
47. J. Bolze, T. Fujisawa, T. Nagao, K. Norisada, H. Saito and A. Naito, Chemical Physics Letters, 2000, 329, 215-220.
48. G. Raffard, S. Steinbruckner, A. Arnold, J. H. Davis and E. J. Dufourc, Langmuir, 2000, 16, 7655-7662.
49. E. Sternin, D. Nizza and K. Gawrisch, Langmuir, 2001, 17, 2610-2616.
50. N. E. Gabriel and M. F. Roberts, Biochemistry, 1984, 23, 4011-4015.
51. C. M. Wiethoff, J. G. Koe, G. S. Koe and C. R. Middaugh, Journal of Pharmaceutical Sciences, 2004, 93, 108-123.
52. K. Crook, B. J. Stevenson, M. Dubouchet and D. J. Porteous, Gene Therapy, 1998, 5, 137-143.
53. D. Hirsch-Lemer and Y. Barenholz, Biochimica Et Biophysica Acta-Biomembranes, 1998, 1370, 17-30.
54. H. Farhood, N. Serbina and L. Huang, Biochimica Et Biophysica Acta-Biomembranes, 1995, 1235, 289-295.
55. D. Pozzi, H. Amenitsch, C. Marchini and G. Caracciolo, Applied Physics Letters, 2010, 96, 183703
56. R. G. Cooper, C. J. Etheridge, L. Stewart, J. Marshall, S. Rudginsky, S. H. Cheng and A. D. Miller, Chem.-Eur. J., 1998, 4, 137-151.
57. T. Salditt, I. Koltover, J. O. Radler and C. R. Safinya, Physical Review E, 1998, 58, 889-904.
58. C. M. Wu, C. Y. Chen, S. Y. Lin and H. L. Chen, React. Funct. Polym., 2011, 71, 266-271.
59. M. Thomas and A. M. Klibanov, Appl Microbiol Biotechnol, 2003, 62, 27-34.
60. I. S. Kikuchi and A. M. Carmona-Ribeiro, Journal of Physical Chemistry B, 2000, 104, 2829-2835.
61. O. Farago, N. Gronbech-Jensen and P. Pincus, Physical Review Letters, 2006, 96, 018102
62. S. J. Ryhanen, M. J. Saily, T. Paukku, S. Borocci, G. Mancini, J. M. Holopainen and P. K. J. Kinnunen, Biophysical Journal, 2003, 84, 578-587.
63. S. J. Ryhanen, J. M. I. Alakoskela and P. K. J. Kinnunen, Langmuir, 2005, 21, 5707-5715.
64. G. Caracciolo, D. Pozzi, A. Amici and H. Amenitsch, Journal of Physical Chemistry B, 2010, 114, 2028-2032.
65. A. El-Aneed, Journal of Controlled Release, 2004, 94, 1-14.
66. M. Morille, C. Passirani, A. Vonarbourg, A. Clavreul and J. P. Benoit, Biomaterials, 2008, 29, 3477-3496.
67. A. G. Schatzlein, Anti-Cancer Drugs, 2001, 12, 275-304.
68. X. Gao, K. S. Kim and D. X. Liu, Aaps Journal, 2007, 9, E92-E104.
69. S. D. Patil and D. G. Rhodes, Nucleic Acids Research, 2000, 28, 4125-4129.
70. H. J. Liang, D. Harries and G. C. L. Wong, Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11173-11178.
71. A. Lakkaraju, J. M. Dubinsky, W. C. Low and Y. E. Rahman, Journal of Biological Chemistry, 2001, 276, 32000-32007.
72. S. May, D. Harries and A. Ben-Shaul, Biophysical Journal, 2000, 78, 1681-1697.
73. D. I. Svergun and M. H. J. Koch, Reports on Progress in Physics, 2003, 66, 1735-1782.
74. M. Garcia-Diaz, O. Dominguez, L. A. Lopez-Fernandez, L. T. de Lera, M. L. Saniger, J. F. Ruiz, M. Parraga, M. J. Garcia-Ortiz, T. Kirchhoff, J. del Mazo, A. Bernad and L. Blanco, Journal of Molecular Biology, 2000, 301, 851-867.
75. T. L. Lin, S. H. Chen, N. E. Gabriel and M. F. Roberts, J. Am. Chem. Soc., 1986, 108, 3499-3507.
76. P. W. Yang, T. L. Lin, Y. Hu and U. S. Jeng, Chinese Journal of Physics, 2012, 50, 349-356.
77. K. J. Glover, J. A. Whiles, G. H. Wu, N. J. Yu, R. Deems, J. O. Struppe, R. E. Stark, E. A. Komives and R. R. Vold, Biophys. J., 2001, 81, 2163-2171.
78. U. S. Jeng, C. H. Su, C. J. Su, K. F. Liao, W. T. Chuang, Y. H. Lai, J. W. Chang, Y. J. Chen, Y. S. Huang, M. T. Lee, K. L. Yu, J. M. Lin, D. G. Liu, C. F. Chang, C. Y. Liu, C. H. Chang and K. S. Liang, J. Appl. Crystallogr., 2010, 43, 110-121.
79. M. P. Nieh, V. A. Raghunathan, C. J. Glinka, T. Harroun and J. Katsaras, Macromol. Symp., 2004, 219, 135-145.
80. M. P. Nieh, P. Dolinar, N. Kucerka, S. R. Kline, L. M. Debeer-Schmitt, K. C. Littrell and J. Katsaras, Langmuir, 2011, 27, 14308-14316.
81. S. R. Kline, J. Appl. Crystallogr., 2006, 39, 895-900.
82. R. R. Vold and R. S. Prosser, J. Magn. Reson. Ser. B, 1996, 113, 267-271.
83. A. Rodriguez-Pulido, F. Ortega, O. Llorca, E. Aicart and E. Junquera, Journal of Physical Chemistry B, 2008, 112, 12555-12565.
84. R. Podgornik, D. C. Rau and V. A. Parsegian, Macromolecules, 1989, 22, 1780-1786.
85. N. F. Bouxsein, C. Leal, C. S. McAllister, K. K. Ewert, Y. L. Li, C. E. Samuel and C. R. Safinya, Journal of the American Chemical Society, 2011, 133, 7585-7595.
86. I. Koltover, K. Wagner and C. R. Safinya, Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14046-14051.
87. M. E. Ki, G. Riedy, K. H. Langley and M. F. Roberts, Biochemistry, 1989, 28, 8206-8213.
88. T. L. Lin, M. Y. Tseng, S. H. Chen and M. F. Roberts, Journal of Physical Chemistry, 1990, 94, 7239-7243.
89. S. B. Smith, Y. J. Cui and C. Bustamante, Science, 1996, 271, 795-799.
90. R. Marty, C. N. N'Soukpoe-Kossi, D. M. Charbonneau, L. Kreplak and H. A. Tajmir-Riahi, Nucleic Acids Research, 2009, 37, 5197-5207.
91. W. H. Han, M. Dlakic, Y. W. J. Zhu, S. M. Lindsay and R. E. Harrington, Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 10565-10570.
92. A. G. Lee, Biochimica Et Biophysica Acta-Biomembranes, 2004, 1666, 62-87.
93. O. H. Petersen, M. Michalak and A. Verkhratsky, Cell Calcium, 2005, 38, 161-169.
94. D. Uhrikova, J. Teixeira, A. Lengyel, L. Almasy and P. Balgavy, Spectr.-Int. J., 2007, 21, 43-52.
95. D. Uhrikova, N. Kucerka, J. Teixeira, V. Gordeliy and P. Balgavy, Chemistry and Physics of Lipids, 2008, 155, 80-89.
96. A. Cordomi, O. Edholm and J. J. Perez, Journal of Physical Chemistry B, 2008, 112, 1397-1408.
97. R. D. Porasso and J. J. L. Cascales, Colloids and Surfaces B-Biointerfaces, 2009, 73, 42-50.
98. S. A. Pandit, D. Bostick and M. L. Berkowitz, Biophysical Journal, 2003, 84, 3743-3750.
99. G. Pabst, A. Hodzic, J. Strancar, S. Danner, M. Rappolt and P. Laggner, Biophysical Journal, 2007, 93, 2688-2696.
100. R. A. Bockmann and H. Grubmuller, Angewandte Chemie-International Edition, 2004, 43, 1021-1024.
101. M. G. Ganesan, D. L. Schwinke and N. Weiner, Biochimica Et Biophysica Acta, 1982, 686, 245-248.
102. E. R. Lamberson, L. R. Cambrea and J. S. Hovis, Journal of Physical Chemistry B, 2007, 111, 13664-13667.
103. P. T. Vernier, M. J. Ziegler and R. Dimova, Langmuir, 2009, 25, 1020-1027.
104. U. R. Pedersen, C. Leidy, P. Westh and G. H. Peters, Biochimica Et Biophysica Acta-Biomembranes, 2006, 1758, 573-582.
105. H. Y. Yang, Y. C. Xu, Z. B. Gao, Y. Y. Mao, Y. Du and H. L. Jiang, Journal of Physical Chemistry B, 2010, 114, 16978-16988.
106. V. A. Bloomfield, Current Opinion in Structural Biology, 1996, 6, 334-341.
107. V. A. Bloomfield, Biopolymers, 1997, 44, 269-282.
108. J. C. Wu, T. L. Lin, U. S. Jeng and N. Torikai, Physica B-Condensed Matter, 2006, 385-86, 838-840.
109. T. L. Lin, J. C. Wu, U. S. Jeng and H. Y. Lee, Journal of Applied Crystallography, 2007, 40, S680-S683.
110. P. W. Yang, T. L. Lin, I. T. Liu, Y. Hu and M. James, Soft Matter, 2012, 8, 7161-7168
111. T. L. Lin, J. C. Wu, Y. Hu, U. S. Jeng and H. Y. Lee, Chinese Journal of Physics, 2012, 50, 332-343.