簡易檢索 / 詳目顯示

研究生: 黃子彥
Tzu-Yen Huang
論文名稱: 使用單一調變器實現高自相位調變容忍性之相位調變倍二位元調變系統
Implement phase-modulation duobinary modulation system (PMDBM) using single one modulator with high SPM tolerance
指導教授: 馮開明
Kai-Ming Feng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 62
中文關鍵詞: 光倍二位元信號模式啁啾自相位調變
外文關鍵詞: optical duobinary signal format, chirped, SPM
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,光倍二位元傳輸系統非常受到矚目由於倍二位元信號其主要的原因,(1)擁有較小的信號頻寬,期約為一般二位元信號(NRZ)的一半,(2)高頻寬使用效應,(3)高色散(dispersion)抵抗能力, (4)可以利用直接解調的方式還原信號,(5)在都會型區域網路不需用到任何的補償裝置,更適合佈放在台灣地小人稠的地理環境。在線性區段中,10 Gb/s 的信號在標準單模光纖下傳輸兩百公里後不需任何的補償裝置來補償信號。然而一旦傳輸在非線性區段中信號位因為自相位調變的效應而使得信號快速失真,為了改善自相位調變現象對信號的影響,所使用的方法是外加一個啁啾的信號來平衡光纖色散和自相位調變的現象。而傳統的啁啾倍二位元傳輸系統必須要使用到兩個調變器,一個調變器用來產生光倍二位原的信號而另一個調變器是用來調整信號的相位,而此種架構大大地增加傳送器的複雜度。
    而在本篇論文中,我們提出一套全新的相位調變倍二位元調變傳輸架構,這個系統只用了一顆調變器來同時完成相位及倍二位元調變的動作並且對自相位調變有高的容忍性。我們在信號的上升緣及下降緣外加相位的信號,而進一步平衡自相位調變及光纖色散的效應,我們實驗證明的將信號傳輸230公里而沒有系統效能的衰減。這套系統不但有著良好的傳輸品質同時也降低系統大大的成本及複雜度。


    In recent years, optical duobinary transmission (DBT) system is very attractive because of its narrow spectral width and high chromatic dispersion tolerance. In linear regime, a 10 Gb/s optical duobinary signal can be transmitted over 200 km of standard single-mode fiber (SMF) without any compensation device. However, in the nonlinear regime with self-phase modulation (SPM), the improvement in dispersion tolerance of DBT decrease rapidly duo to SPM limit. In order to improve the SPM effect, the method is inducing the chirp signal to maintain the balance between SPM and dispersion effect but the traditional chirped duobinary transmission (CDBT) scheme has complex transmitter because of using two modulators.
    In this paper, we experimentally demonstrate a cost-effective phase-modulation duobinary modulation scheme for improving self-phase modulation (SPM) tolerance using a single modulator. Successful transmission over 230 km of standard single mode fiber (SSMF) was achieved without any power penalty.

    CONTENTS Chinese Abstract ..........................................................…………….... Ⅰ English Abstract ..........................................................………………. Ⅱ Acknowledgements ..........................................………….................... Ⅲ Contents ...........................................................………………………. Ⅳ List of Figures ..................................…..........………….……………. Ⅵ List of Tables ........................................................……..…………….. Ⅷ CHAPTER 1 Introduction 1-1 Why use duobinary modulation format............................................................. 1 1-2 What is duobinary modulation format? …........................................................ 3 1-3 Structure of the thesis.................................................................................…. 4 CHAPTER 2 Basic concept of duobinary modulation system 2-1 Duobinary signaling………………………...................................................... 5 2-1-1 Duobinary encode……........................................................................... 5 2-1-2 Duobinary filter............…………..……...............................................10 2-2 Operation of Mach-Zehnder modulator.......................................................... 11 2-3 Duobinary decode……………….….......…................................................... 13 2-3-1 Error propagation.…………………………..........................................14 2-3-2 Differential encoder .....................…………………………................ 15 2-4 Optical duobinary transmission system……..…….....……………................ 17 2-4-1 Conventional optical duobinary transmitter……..……….…….......... 18 2-4-2 Analysis of the signal spectrum…………...……...………......……… 22 CHAPTER 3 Conventional duobinary transmission system 3-1 Performance limitation for optical channel………………..…........................ 24 3-2 performance analyze of DBT system.....…………..........…............................ 25 3-2-1 Simulation result for DBT system……………….…........................... 25 3-2-2 Experimental result for DBT system……….……............……....…... 32 CHAPTER 4 The phase-modulation-enhanced duobinary modulation format 4-1 Introduction of phase-modulation-enhanced duobinary modulation format…..40 4-2 Phase-modulation-enhanced duobinary modulation scheme…….…………….41 4-2-1 The operation principle..........………................................................... 41 4-3 Experimental setup and result for PMEDBM system.........................................44 4-4 Performance analyze for conventional DBT and novel PMEDBM system…....52 CHAPTER 5 Conclusions ………………………….….………..........…............... 57 Reference ................................................................................................................ 59 LIST OF FIGURES Figure 1-1: Multi-Ring Passive Optical Network structure. Figure 1-2: Duobinary signaling scheme. Figure 2-1: Duobinary signaling scheme. Figure 2-2: Duobinary-signaling waveform. Figure 2-3: Ideal magnitude. Figure 2-4: Frequency response of the duobinary conversion filter. Figure 2-5: Impulse response of the duobinary conversion filter. Figure 2-6: Duobinary filter structures. Figure 2-7: The structure of MZ modulator. Figure 2-8: Operation of MZ modulator for generating duobinary signal. Figure 2-9: Figure 2-9: E/O converter for duobinary signal. Figure 2-10: Duobinary decoder scheme Figure 2-11: Signal process and decoding rule for duobinary encoder. Figure 2-12: Logic gate for precoder circuit. Figure 2-13: A precoded duobinary scheme. Figure 2-14: Detector for recovering original binary sequence. Figure 2-15: Configuration of the optical duobinary transmitter. Figure 2-16: The signal flow for optical duobinary-signaling. Figure 2-17: Illustrating duobinary transmission system. Figure 2-18: 10 Gb/s power spectra density for NRZ and duobinary signal. Figure 2-19: Power spectrum comparison. Figure 3-1: Transmission model for the proposed optical duobinary. Figure 3-2: Simulation model. Figure 3-3: Sensitivity for NRZ, delay-and-add circuit and duobinary filter. Figure 3-4: Signal bandwidth of NRZ and duobinary signal. Figure 3-5: The waveform variation at transmitter of duobinary system. Figure 3-6: Eye diagrams are generated by different filter bandwidth. Figure 3-7: The system sensitivity for different filter bandwidth. Figure 3-8: Experiment setup of DBT system. Figure 3-9: Receiver sensitivity and BER curve for conventional DBT system in linear regime. Figure 3-10: Eye pattern for the different transmission distance in linear regime. Figure 3-11: Receiver sensitivity and BER curve for conventional DBT system in nonlinear regime. Figure 3-12: Eye pattern for the different transmission distance in linear regime. Figure 4-1: Principle of PMEDBT using one modulator. Figure 4-2: Illustration of signal flow for chirped duobinary signal. Figure 4-3: Experimental setup of PMEDBM transmission system. Figure 4-4: Sensitivity for PMEDBM system in linear regime. Figure 4-5: BER of 0 km and 230 km of DBM and PMEDBM in nonlinear regime. Figure 4-6: Experimental results of (a) 0 km eye pattern of DBM, (b) 230 km eye pattern of DBM, (c) 0 km eye pattern of PMEDBM, (d) 230 km eye pattern of PMEDBM. Figure 4-7: Optical spectra of (a) 0km DBM and 0km PMDBM, (b) 230km DBM, and 230km PMDBM Figure 4-8: Eye diagrams of different transmission distance for PMEDBM in nonlinear regime. Figure 4-9: The sensitivity of PMDBM in linear & nonlinear regime. Figure 4-10: Eye diagrams of different transmission distance for PMEDBM in linear regime. Figure 4-11: Receiver sensitivity for DBT and PMEDBT system. Figure 4-12: The transmitter setup for PMEDBT system. Figure 4-13: The sensitivities of PMDBM (66% driving voltage) and DBM with different driving voltage in linear and nonlinear regime. Figure 4-14: Eye diagram is generated by different driving voltage. LIST OF TABLES Table 1-1: Dispersion compensation method and corresponding drawback. Table 2-1: Table 2-1: Illustrating example on duobinary coding. Table 2-2: Truth table for modulo-two addition. Table 2-3: Truth table for precoded duobinary signaling. Table 3-1: Simulation parameter. Table 3-2: Dispersion penalty for duobinary modulation scheme. Table 5-1: Receiver sensitivity for PMEDBT and DBT in 0 and 230 km distance.

    [1]. Lender. "The Duobinary Technique for High-Speed Data Transmission". IEEE transactions on communication and electronics, 1963.

    [2]. A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol., vol. COM-12, pp. 128–135, 1964.

    [3]. X. Gu, S. J. Pycock, D. M. Spirit, A. D. Ellis, and C. J. Anderson, “10 Gbit/s, 138 km uncompensated duobinary transmission over installed standard fiber,” Electron. Lett., vol. 30, no. 23, pp. 1953–1954, 1994.

    [4]. K. Yonenaga, S. Kuwano, S. Norimatsu, and N. Shibata, “Optical duobinary transmission system with no receiver sensitivity degradation,” Electron. Lett., vol. 31, no. 4, pp. 302–304, 1995.

    [5]. S. Kuwano, K. Yonenaga, and K. Iwashita, “10 Gbit/s repeaterless transmission experiment of optical duobinary modulated signal,” Electron.
    Lett., vol. 31, no. 16, pp. 1359–1361, 1995.

    [6]. A. J. Price and N. Le Mercier, “Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance,” Electron. Lett., vol. 31, no. 1, pp. 58–59, 1995.

    [7]. D. Penninckx, L. Pierre, J. P. Thiery, B. Clesca, M. Chbat, and J. L. Beylat, “Relation between spectrum bandwidth and the effects of chromatic dispersion in optical transmissions,” Electron. Lett., vol. 32, no. 11, pp. 1023–1024, 1996.
    [8]. L. Pierre, J. P. Thiery and D. Penninckx, “243 km 10 Gb/s Transmission Experiment Through Standard Fiber and Impact of Self-modulation Using Partial Response Scheme,” IEE Electron. Lett. Vol. 32, No. 7, pp. 673-674, Mar. 1996.

    [9]. Yonega, Kuwano. "Dispersion-Tolerant Optical Transmission System Using Duobinary Transmitter and Binary Receiver". Journal of Lightwave Technology, vol. 15, no. 8, 1997.

    [10]. Walklin, Conradi. "On the Relationship Between Chromatic Dispersion and Transmitter Filter Response in Duobinary Optical Communication Systems". IEEE photonics technology letters, vol. 9, no.7, 1997.

    [11]. D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, “The phase-shaped binary transmission (PBST): A new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett., vol. 9, pp. 259–261, Feb. 1997.

    [12]. A. Djupsjobacka, “Prechirp Duobinary Modulation,” IEEE Photon. Technol.
    Lett., Vol. 10, No. 8, pp. 1159–1161, Aug. 1998.

    [13]. T. Ono, Y. Yano, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, “Characteristics of optical duobinary signals in terabit/s capacity, high-spectral efficiency WDM systems,” J. Lightwave Technol., vol. 16, pp. 788–797, May 1998.

    [14]. Wichers, Rosenkranz: "Optical duobinary modulation schemes using a Mach-Zehnder transmitter for Lightwave Systems". International Conf. on Transparent Optical Networks ICTON'99, 1999, p. 15-18

    [15]. W. Kaiser, M. Wichers, T. Wuth, W. Rosenkranz, C. Scheerer, C. Glingener, A. Farbert, J. P. Elbers and G. Fischer, “SPM Limit of Duobinary Transmission,” in Proc ECOC 2000, vol. 3, Munich, Germany, paper We 7.2.2, pp. 31–32

    [16]. Y. Kim, H. Jang, J. Lee, I. Lee, M. Kim and J. Jeong, “Improvement of SPM Tolerance for Phase-Modulated Duobinary Transmission Using Phase Modulator with
    Postfiltering Technique,” IEEE Photon. Tech. Lett., Vol. 15, No. 12, pp. 1785–1787, Dec. 2003.

    [17]. H. Lee, H. Kim, J. Lee, S. K. Kim, G. Lee, S. Hwang, Y. Oh, J. Jeong and G. Shim, “Cost-Effective Optical Chirped Duobinary Transmitter Using an Electroabsorption Modulated Laser,” IEEE Photon. Technol. Lett., Vol. 17, No. 7, pp.
    905–907, Apr. 2005.

    [18]. S. Haykin, communication system.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE