簡易檢索 / 詳目顯示

研究生: 黃柏叡
Huang, Bo-Rui
論文名稱: 應用相移隔離轉換器之具雙向聯網功能電動車馬達驅動系統
AN ELECTRIC VEHICLE MOTOR DRIVE WITH BIDIRECTIONAL GRID-CONNECTED FUNCTION USING PHASE-SHIFTED ISOLATED CONVERTER
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 陳盛基
Chen, Seng-Chi
曾萬存
Tseng, Wan-Tsun
鐘太郎
Zhong, Tai-Lang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 174
中文關鍵詞: 電動車內置磁石式永磁同步馬達蓄電池超電容介面轉換器相移隔離轉換器切換式整流器再生煞車無位置感測電網至車輛車輛至家庭車輛至電網能源收集
外文關鍵詞: EV, IPMSM, battery, supercapacitor, interface converter, phase-shift, isolated converter, switch-mode rectifier, regenerative braking, sensorless, G2V, V2H, V2G, energy harvesting
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發一具雙向隔離聯網及能源收集功能之電動車用內置磁石式永磁同步馬達驅動系統。為改善電動車在廣速度範圍下之驅動性能,馬達驅動系統之直流鏈電壓由蓄電池經全橋式直流/直流介面轉換器建立,可低於或高於電池電壓。此外,超電容經雙向升壓/降壓介面轉換器介接至直流鏈,強化電池之能源轉換特性,降低其變動之充/放電電流。所有電力電路及控制機構均妥以設計及實測評定。
    接著,開發基於高頻訊號注入之無位置感測電動車內置磁石式永磁同步馬達驅動系統,並與標準驅動系統進行性能比較評定。除固定頻率注入外,亦提出隨機變頻注入機構。在正常之轉子位置估測操控下,可獲得較均勻分佈之諧波頻譜。
    在電動車閒置下,所構建之三相變頻器及雙向隔離雙主動橋式轉換器,可施行電網至車輛、車輛至家庭、車輛至電網等操作,由相移雙主動橋式轉換器提供電氣隔離。在電網至車輛模式,三相變頻器操作成切換式整流器,在車載電池充電下,具良好之交流入電電力品質。至於車輛至家庭及車輛至電網模式,所形成之單相三線式變頻器,產出交流電供給家用負載或回送電能至電網。
    至於所開發之能源收集系統,車頂之太陽光伏可於任何情況下直接對電池充電。在閒置時,透過所構之電路,屋頂之太陽光伏、可取用之直流電源或單相交流電源,亦可對車載電池進行輔助充電。


    This thesis is mainly concerned with the development of an electric vehicle (EV) interior permanent magnet synchronous motor (IPMSM) drive with bidirectional isolated grid-connected and energy harvesting functions. To yield improved EV driving performance over wide speed range, the motor drive DC-link voltage is established by the battery via an H-bridge DC/DC interface converter. The DC-link voltage can be lower or higher than battery voltage. Moreover, the battery energy conversion characteristics are enhanced by adding a supercapacitor (SC) bank with bidirectional boost/buck DC/DC interface converter. The SC can assist the battery to reduce its fluctuated charging and discharging currents. All schematics and control schemes of all constituted power stages are properly designed and evaluated experimentally.
    Next, the position sensorless EV IPMSM drive based on high-frequency signal injection (HFI) approach is developed. And its comparative performance to the standard drive is conducted. In addition to the fixed injected frequency, a randomly varied injected frequency scheme is proposed. Under normal rotor position sensed operation, more uniformly harmonic spectrum due to injected signal can be obtained.
    In idle condition, a three-phase inverter and a bidirectional isolated dual active bridge (DAB) converter are arranged to achieve the G2V/V2H/V2G operations of the developed EV motor drive. The galvanic isolation is provided by the established phase-shifted isolated DAB converter. In G2V operation, the three-phase inverter schematic is operated as a switch-mode rectifier (SMR) to yield good line drawn power quality under battery charging. As to the V2H/V2G operations, a single-phase three-wire (1P3W) inverter can be formed for powering the home appliances or sending power to the mains.
    Finally, for the developed energy harvesting system, the EV roof photovoltaic (PV) can directly charge the battery under any conditions. In idle condition, through the properly constructed schematic, the house roof PV, the available DC or single-phase AC source can conduct the on-board battery auxiliary charging.

    ABSTRACT i ACKNOWLEDGEMENT ii LIST OF CONTENTS iii LIST OF FIGURES viii LIST OF TABLES xx LIST OF SYMBOLS xxii LIST OF ABBREVIATIONS xxxiv CHAPTER 1 INTRODUCTION 1 CHAPTER 2 SOME TECHNOLOGIES OF PERMANENT-MAGNET SYNCHRONOUS MOTORS AND ELECTRIC VEHICLES 6 2.1 Introduction 6 2.2 Some Commonly Used Motors 6 2.3 Introduction to PMSM Drives 8 A. Some Key Issues of an EV PMSM Drive 8 B. Motor Structures 8 C. Physical Modeling 10 D. Parameter Estimation of the Employed PMSM 13 E. Commutation Shift 15 2.4 Introduction to G2V and V2G Operations 16 2.5 Introduction to Electric Vehicles 18 A. Classifications 18 B. Power Control Units 19 C. EV Load Model 20 2.6 Energy Storage Devices 22 A. Battery 22 B. Supercapacitor 24 C. Possible Interconnected Schematics of Battery and SC 24 2.7 Interface Converters 26 A. DC/DC Converters 26 B. Switch-mode Rectifiers . 28 C. Inverters . 30 2.8 Some EV Bidirectional Chargers 31 CHAPTER 3 BATTERY/SC POWERED EV IPMSM DRIVE 34 3.1 Introduction 34 3.2 System Configuration and Functional Description 34 A. System Configuration 34 B. Functional Descriptions 34 3.3 Establishment of IPMSM Drive 37 A. Power Circuit 37 B. Control Schemes 39 3.4 Battery Interface DC/DC Converter 44 A. Power Circuit 45 B. Control Schemes 46 C. Experimental Performance Evaluation for the Front-end H-bridge DC/DC Converter 53 3.5 Evaluation of the Battery Powered EV IPMSM Drive 54 A. Acceleration/Deceleration and Reversible Operation 54 B. Steady-state Characteristics 55 C. Speed Dynamic Response 56 D. Programmed Speed Pattern Evaluation 57 E. Energy Conversion Efficiency Assessment 58 3.6 Effectiveness of Adjustable DC-link Voltage 62 3.7 SC Interface Converter 69 A. Equivalent Circuit Parameter Estimation 69 B. Power Circuit 72 C. Control schemes 73 D. Experimental Performance Evaluation 74 3.8 EV IPMSM Drive Powered by Battery and SC 75 A. Hybrid Energy Operation Management 76 B. Experimental Verification 77 3.9 Dynamic Braking 81 CHAPTER 4 HFI POSITION SENSORLESS EV IPMSM DRIVE 83 4.1 Introduction 83 4.2 Fixed-frequency Injected Signal 83 A. System Configuration and Operation Principle 83 B. System Parameters 86 C. Measured Results 87 4.3 Randomly Varied-frequency Injected Signals 95 A. System Configuration and Operation Principle 95 B. Measured Results 96 CHAPTER 5 ISOLATED GRID-CONNECTED OPERATIONS 104 5.1 Introduction 104 5.2 System Configuration 104 5.3 Bidirectional Phase-shifted Dual Active Bridge DC/DC Converter 104 A. Operation Principle 104 B. Design of System Components 107 C. Measured Results 111 5.4 G2V Charging Operation 114 5.4.1 System Configuration 114 5.4.2 Single-phase SMR Based G2V Battery Charger 117 A. Single-phase Boost SMR 117 B. Measure Results 119 5.4.3 Three-phase SMR Based G2V Battery Charger 120 A. Three-phase Boost SMR 120 B. Measured Results 123 5.5 V2H and V2G Discharging Operations 126 5.5.1 V2H Operation 127 A. Power Circuit 127 B. Modeling of 1P3W Inverter 127 C. Control Schemes 130 D. Experimental Results 132 5.5.2 V2G Operation 139 A. Functional Statement 139 B. Control Schemes 140 C. Experimental Results 142 CHAPTER 6 THE DEVELOPED EV ENERGY HARVESTING MECHANISM 145 6.1 Introduction 145 6.2 System Configuration 145 6.3 EV Roof PV Energy Harvesting Scheme 145 A. Power Circuit 145 B. Current Control Scheme 148 C. Experimental Results 148 6.4 Plug-in Energy Harvesting Scheme with Single-phase AC input 149 A. Battery Interface DC/DC Buck Converter 150 B. Single-phase Bridgeless Boost SMR 151 C. Experimental Results 155 6.5 Plug-in Energy Harvesting Scheme with DC Source Input 159 A. Power Circuit 159 B. Control Schemes 161 C. Experimental Results 163 CHAPTER 7 CONCLUSIONS 166 REFERENCES 168

    A. Electric Vehicles
    [1] C. C. Chan, A. Bouscayrol, and K. Chen, “Electric, hybrid, and fuel-cell vehicles: architectures and modeling,” IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 589-598, 2010.
    [2] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011.
    [3] A. M. Lulhe and T. N. Date, “A technology review paper for drives used in electrical vehicle (EV) & hybrid electrical vehicles (HEV),” in Proc. IEEE lCCICCT, 2015.
    [4] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
    [5] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
    [6] M. Arata, Y. Kurihara, D. Misu, and M. Matsubara, “EV and HEV motor development in TOSHIBA,” in Proc. IEEE IPEC, pp. 1874-1879, 2014.
    [7] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transp. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
    [8] A. Siadatan, M. K. Adab, and H. Kashian, “Compare motors of Toyota Prius and synchronous reluctance for using in electric vehicle and hybrid electric vehicle,” in Proc. IEEE EPEC, pp. 1-6, 2017.
    B. Permanent-Magnet Synchronous Motor Drives
    [9] J. Y. Lee, S. H. Lee, G. H. Lee, J. P. Hong, and J. Hur, “Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1303-1306, 2006.
    [10] S. Sakunthala, R. Kiranmayi, and P. N. Mandadi, “Investigation of PI and fuzzy controllers for speed control of PMSM motor drive,” in Proc. IEEE RTECC, pp. 133-136, 2018.
    [11] M. C. Chou, C. M. Liaw, S. B. Chien, F. H. Shien, J. R. Tsai, and H. C. Chang, “Robust current and torque controls for PMSM driven satellite reaction wheel,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 1, pp. 58-74, 2011.
    [12] S. Kar and S. K. Mishra, “Direct torque control of permanent magnet synchronous motor drive with a sensorless initial rotor position estimation scheme,” in Proc. IEEE APCET, pp. 1-6, 2012.
    [13] Y. S. Choi, H. H. Choi, and J. W. Jung, “Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives,” IEEE Trans. Power. Electron., vol. 31, no. 5, pp. 3728-3737, 2016.
    [14] N. Prabhakar and M. K. Mishra, “Dynamic hysteresis current control to minimize switching for three-phase four-leg VSI topology to compensate nonlinear load,” IEEE Trans. Power Electron., vol. 25, no. 8, pp. 1935-1942, 2010.
    [15] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for a PMSM driven satellite reaction wheel,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, October 2011.
    [16] T. Türker, U. Buyukkeles, and A. F. Bakan, “A robust predictive current controller for PMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3906-3914, 2016.
    [17] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
    [18] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 1007-1015, 2013.
    [19] B. Bossoufi, H. A. Aroussi, M. E. Ghamrasni, and Y. Ihedrane, “Speed control for PMSM drive system using predictive control,” in Proc. IEEE ECAI, pp. 1-6, 2016.
    [20] J. W. Jung, V. Q. Leu, T. D. Do, E. K. Kim, and H. H. Choi, “Adaptive PID speed controller design for permanent magnet synchronous motor drives,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 900-908, 2015.
    [21] S. Chaithongsuk, B. N. Mobarakeh, J. P. Caron, N. Takorabet, and F. M. Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012.
    [22] S. Bolognani, S. Calligaro, and R. Petrella, ‘‘Adaptive flux-weakening controller for interior permanent magnet synchronous motor drives,’’ IEEE J. Emerging Sel. Topics Power Electron., vol. 2, no. 2, pp. 236-248, 2014.
    [23] D. V. Samokhvalov, M. V. Schemelev, P. A. Shpakov, V. A. Skurikhin, and N. A. Ulissky, “Characteristics of a permanent magnet synchronous motor in field weakening mode,” in Proc. IEEE EIConRusNW, pp. 668-670, 2016.
    [24] F. Caricchi, F. crescimbini, F. G. Capponi, and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, vol. 1, pp. 287-293, 1998.
    [25] T. A. Burress, “Benchmarking EV and HEV technologies,” Technical Report ORNL, 2015.
    [26] C. M. Liaw, K. W. Hu, Y. S. Lin, and T. H. Yeh, “An electric vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4493-4504, 2016.
    [27] K. Akhilesh and N. Lakshminarasamma, “Control scheme for improved efficiency in an H-bridge buck-boost converter,” in Proc. IEEE PEDES, 2018.
    C. Hybrid Energy Storage System in EVs
    [28] A. F. Burke, “Batteries and ultra-capacitors for electric, hybrid, and fuel cell vehicles,” in Proc. IEEE, vol. 95, no. 4, pp. 806-820, 2007.
    [29] M. Matsunaga, T. Fukushima, and K. Ojima, “Powertrain system of Honda FCX Clarity fuel cell vehicle,’’ World Electric Vehicle Journal, vol. 3, 2009.
    [30] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012.
    [31] P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “The ultracapacitor-based regenerative controlled electric drives with power-smoothing capability,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4511-4522, 2012.
    [32] H. Xiaoliang, T. Hiramatsu, and H. Yoichi, “Energy management strategy based on frequency-varying filter for the battery supercapacitor hybrid system of electric vehicles,’’ in Proc. IEEE EVS27, 2013.
    [33] F. Ju, Q. Zhang, W. Deng and J. Li, “Review of structures and control of battery-supercapacitor hybrid energy storage system for electric vehicles,’’ in Proc. IEEE CASE, 2014.
    [34] S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf, and T. A. Khan, “Comparison of characteristics- lead acid, nickel based, lead crystal,” in Proc. IEEE UKSim, 2015.
    [35] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,’’ IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
    [36] Y. Parvini, J. B. Siegel, A. G. Stefanopoulou, and A. Vahidi, “Supercapacitor electrical and thermal modeling, identification, and validation for a wide range of temperature and power applications,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1574-1585, 2016.
    [37] F. Akar, Y. Tavlasoglu, and B. Vural, “An energy management strategy for a concept battery/ultracapacitor electric vehicle with improved battery life,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 191-200, 2017.
    [38] M. O. Badawy, T. Husain, Y. Sozer, and J. A. De Abreu-Garcia, “Integrated control of an IPM motor drive and a novel hybrid energy storage system for electric vehicles,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5810-5819, 2017.
    [39] V. T. Tran, D. Sutanto, K. M. Muttaqi, “The state of the art of battery charging infrastructure for electrical vehicles: topologies, power control strategies, and future trend,” 2017 Australasian Universities Power Engineering Conference (AUPEC), pp. 1-6, 2017.
    [40] Y. Fukushima, M. Fukuma, M. Hirose, K. I. Sugiyama, M. Kawami, K. Yoshino, S. Kishidaand, and S. S. Lee, “Application of electric double layer capacitor and water level sensor to rice field monitoring system,’’ 2018 IEEE SENSORS, 2018.
    [41] M. A. A. Rahman and M. K. Rahmat, “Performance review on small-medium scales energy storage system in term of investment aspect,’’ in Proc. IEEE PECon, 2018.
    [42] S. Khan, M. S. Alam, M. S. J. Asghar, M. A. Khan, and A. Abbas, “Recent development in level 2 charging system for xEV: a review,’’ in Proc. IEEE CCTES, 2018.
    [43] H. H. Eldeeb, A. T. Elsayed, C. R. Lashway, and O. Mohammed, “Hybrid energy storage sizing and power splitting optimization for plug-in electric vehicles,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2252-2262, 2019.
    D. Photovoltaic in EVs
    [44] J. I. Cairo and A. Sumper, “Requirements for EV charge stations with photovoltaic generation and storage,” in Proc. IEEE ISGT, pp. 1-6, 2012.
    [45] P. Kádár and A. Varga, “Photovoltaic EV charge station,” in Proc. IEEE SAMI, pp. 57-60, 2013.
    [46] S. A. Singh and S. S. Williamson, “Comprehensive review of PV/EV/grid integration power electronic converter topologies for DC charging applications,” in Proc. IEEE ITEC, pp. 1-5, 2014.
    [47] M. Abdelhamid, R. Singh, and I. Haque, “Role of PV generated DC power in transport sector: case study of plug-in EV,” in Proc. IEEE ICDCM, pp. 299-304, 2015.
    E. Position Sensorless Control Methods
    [48] Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, “Performance improvement of Sensorless IPMSM drives in a low-speed region using online parameter identification,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 798-804, 2011.
    [49] M. A. Hamida, J. D. Leon, A. Glumineau, and R. Boisliveau, “An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 739-748, 2013.
    [50] M. S. Rafaq, F. Mwasilu, J. Kim, H. H. Choi, and J. W. Jung, “Online parameter identification for model-based sensorless control of interior permanent magnet synchronous machine,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4631-4643, 2017.
    [51] J. H. Jang, J. I. Ha, M. Ohto, K. Ide, and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
    [52] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron, and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
    [53] H. W. De Kock, M. J. Kamper, and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, 2009.
    [54] D. Raca, P. Garcia, D. D. Reigosa, F. Briz, and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010.
    [55] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, pp. 1508-1511, 2010.
    [56] D. Kim, Y. C. Kwon, S. K. Sul, J. H. Kim, and R. S. Yu, “Suppression of injection voltage disturbance for high-frequency square-wave injection sensorless drive with regulation of induced high-frequency current ripple,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 302-312, 2016.
    [57] S. Po-ngam and S. Sangwongwanich, “Stability and dynamic performance improvement of adaptive full-order observers for sensorless PMSM drive,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 588-600, 2012.
    [58] M. A. Hamida, J. D. Leon, A. Glumineau, and R. Boisliveau, “An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 739-748, 2013.
    [59] Y. Park and S. K. Sul, “Sensorless control method for PMSM based on frequency-adaptive disturbance observer,” IEEE J. Emerging Sel. Topics Power Electron., vol. 2, no. 2, pp. 143-151, 2014.
    [60] R. W. Hejny and R. D. Lorenz, “Evaluating the practical low-speed limits for back-EMF tracking-based sensorless speed control using drive stiffness as a key metric,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1337-1343, 2011.
    [61] A. Sarikhani and O. A. Mohammed, “Sensorless control of PM synchronous machines by physics-based EMF observer,” IEEE Trans. Energy Convers., vol. 27, no. 4, pp. 1009-1017, 2012.
    [62] R. Antonello, L. Ortombina, F. Tinazzi, and M. Zigliotto, “Enhanced low-speed operations for sensorless anisotropic PM synchronous motor drives by a modified back-EMF observer,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3069-3076, 2018.
    [63] G. Foo and M. F. Rahman, “Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1270-1278, 2010.
    [64] I. Hideaki, I. Masanobu, K. Takeshi, and I. Kozo, “Hybrid sensorless control of IPMSM for direct drive applications,” in Proc. IEEE IPEC, pp. 2761-2767, 2010.
    [65] S. Bolognani, S. Calligaro, R. Petrella, and M. Tursini, “Sensorless control of IPM motors in the low-speed range and at standstill by HF injection and DFT processing,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 96-104, 2011.
    [66] S. Taniguchi, K. Yasui, and K. Yuki, “Noise reduction method by injected frequency control for position sensorless control of permanent magnet synchronous motor,” in Proc. IEEE IPEC-Hiroshima 2014 - ECCE ASIA, pp. 2465-2469, 2014.
    [67] W. Zine, L. Idkhajine, E. Monmasson, Z. Makni, P. A. Chauvenet, B. Condamin, and A. Bruyere, “Optimisation of HF signal injection parameters for EV applications based on sensorless IPMSM drives,” IET Elect. Power Appl., vol. 12, no. 3, pp. 347-356, 2018.
    F. PWM Inverters
    [68] S. J. Chiang and C. M. Liaw “A single-phase three-wire transformerless inverter,” IEE Proc. Electron. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
    [69] E. Koutroulis and F. Blaabjerg, “Methodology for the optimal design of transformerless grid-connected PV inverters,” IET Power Electron., vol. 5, no .8, pp. 1491-1499, 2012.
    [70] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, 2013.
    [71] V. Michal, “Three-level PWM floating H-bridge sinewave power inverter for high-voltage and high-efficiency applications,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4065-4074, 2015.
    [72] T. Ahmadzadeh, M. Sabahi, and E. Babaei, “Modified PWM control method for neutral point clamped multilevel inverters,” in Proc. IEEE ECTI-CON, pp. 765-768, 2017.
    G. Grid-Connected Operations
    [73] T. S. Ustun, C. R. Ozansoy, and A. Zayegh, “Implementing vehicle-to-grid (V2G) technology with IEC 61850-7-420,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1180-1187, 2013.
    [74] F. Berthold, A. Ravey, B. Blunier, D. Bouquain, S. Williamson, and A. Miraoui, “Design and development of a smart control strategy for plug-in hybrid vehicles including vehicle-to-home functionality,” IEEE Trans. Transport. Electrific., vol. 1, no. 2, pp. 168-177, 2015.
    [75] M. C. Kisacikoglu, M. Kesler, and L. M. Tolbert, “Single-phase on-board bidirectional PEV charger for V2G reactive power operation,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 767-775, 2015.
    [76] V. Monteiro, J. G. Pinto, and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, 2016.
    [77] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016.
    [78] D. Das, N. Weise, K. Basu, R. Baranwal, and N. Mohan, “A bidirectional soft-switched DAB-based single-stage three-phase AC-DC converter for V2G application,” IEEE Trans. Transport. Electrific., vol. 5, no. 1, pp. 186-199, 2018.
    [79] M. A. Masrur, A. G. Skowronska, J. Hancock, S. W. Kolhoff, D. Z. McGrew, J. C. Vandiver, and J. Gatherer, “Military-based vehicle-to-grid and vehicle-to-vehicle microgrid-system architecture and implementation,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 157-171, 2018.
    [80] A. Khaligh and M. D. Antonio, “Global trends in high-power on-board chargers for electric vehicles” IEEE Trans. Veh. Technol., vol. 68, no. 4, 2019.
    H. Front-end Converters and Switch-mode Rectifiers
    [81] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single-phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
    [82] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey, and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
    [83] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems-part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
    [84] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, 2013.
    [85] M. A. Khan, I. Husain, and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013.
    [86] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, 2013.
    [87] S. Kim and F. S. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, 2015.
    [88] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
    [89] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, 2015.
    [90] I. Subotic, N. Bodo, and E. Levi, “An EV drive-train with integrated fast charging capability,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1461-1471, 2016.
    [91] R. Hou and A. Emadi, “Applied integrated active filter auxiliary power module for electrified vehicles with single-phase onboard charger,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1860-1871, 2017.
    [92] K. Fahem, D. E. Chariag, and L. Sbita, “On-board bidirectional battery chargers topologies for plug-in hybrid electric vehicles,” in Proc. IEEE GECS, 2017.
    [93] I. Roasto, A. Rosin, and T. Jalakas, “Multiport interface converter with an energy storage for nanogrids,” IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, pp. 6088-6093, 2018.
    I. Isolated DC/DC converter
    [94] M. N. Kheraluwala, R. W. Gascoigne, D. M. Divan, and E. D. Baumann, “Performance characterization of a high-power dual active bridge dc-to-dc converter,” IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1294-1301, 1992.
    [95] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2012.
    [96] T. Koroglu, M. M. Savrun, A. Tan, M. U. Cuma, K. Ç. Bayindir, and M. Tumay, “Design and implementation of full-bridge bidirectional isolated DC-DC converter for high power applications,” in Proc. IEEE EPE'16 ECCE Europe, pp. 1-7, 2016.
    J. Others
    [97] T. J. Barlow, S. Latham, I. S. McCrae, and P. G. Boulter, “A reference book of driving cycles for use in the measurement of road vehicle emissions,” 2009.
    [98] “Digital signal controller TMS320F28335 data sheet,” Available: http://www.ti.com/lit/ds/ symlink/tms320f28335.pdf, 2016.
    [99] Y. L. Liu, “An electric vehicle PMSM drive with bidirectional isolated grid-connected and energy harvesting capabilities,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2018.
    [100] “Comparative characteristics of batteries,” Available: https://leadcrystalbatteries.com/lead- crystal-battery-performance, 2019.
    [101] “Super-capacitor BMOD0006 E160 B02 data sheet,” Available: https://www.maxwell.com/ images/documents/160VModule_DS_3000246_6.pdf, 2019.
    [102] “Amorphous metal c-core series datasheet,” Available: https://elnamagnetics.com/wp- content/uploads/catalogs/Metglas/powerlite.pdf, 2019.
    [103] “Amorphous c-cores properties and application notes,” Available: https://www.sekels.de/ fileadmin/PDF/Deutsch/Presentation_amorphous_c_cores_design_notes_v3.pdf, 2019.

    QR CODE