簡易檢索 / 詳目顯示

研究生: 劉廣志
Kuang-Chih Liu
論文名稱: 對表面光場做有限制的重新打光
Constrained Relighting of Surface Light Fields
指導教授: 張鈞法
Chun-Fa Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 58
中文關鍵詞: image-basedsurface light fieldrelightingprecomputed radiance transfer
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • With image-based relighting (IBL), one can render realistic relit images of a scene without prior knowledge of illumination environment. In this thesis, we present a framework for rendering from arbitrary viewpoints and relighting under arbitrarily rotated illumination environment of a real object from a set of images and a geometric model of the object under static illumination condition. Instead of using analytical reflectance model or using fixed viewpoint image-based relighting techniques, a clustering method for irregular and incomplete data is proposed to remove statistical redundancies and to extract illumination information from a large set of partial data. Further, we integrate the precomputed radiance transfer (PRT) technique into our framework to relight the scene that dynamically changing and constrained lighting condition. By doing so, we relax the limitation of rendering under the static illumination and make it possible to relight virtual objects realistically in real time.


    Table of Contents Abstract ii Acknowledgements iii Table of Contents iv List of Figures vi Chapter 1 Introduction 1 1.1 Thesis Overview 4 Chapter 2 Previous Work 6 2.1 Image-Based Modeling and Rendering 6 2.1.1 Overview of Algorithms 7 2.1.2 Compression 9 2.2 Image-Based Lighting 10 2.3 Reflectance Modeling 12 2.3.1 Inverse Rendering 12 2.4 Precomputed Radiance Transfer 13 Chapter 3 Reflectance 14 3.1 Radiance 14 3.2 Irradiance 15 3.3 BRDF 15 3.4 Rendering Equation 16 3.5 Reflection as Convolution 17 3.5.1 Convolution 17 3.5.2 Interpretation 17 3.6 Summary 20 Chapter 4 Transformation of View Maps 21 4.1 Approach 21 4.2 Surface 22 4.2.1 Representation 22 4.2.2 Process of Light Field Mapping 23 4.3 Transformation 24 4.4 Discussion 27 4.5 Results 28 Chapter 5 Compression of View Maps 30 5.1 Related Work: Vector Quantization 31 5.2 Definition of Incomplete Data 32 5.3 Review of Fuzzy c-Means Clustering 34 5.4 Strategies for Incomplete Data Clustering 36 5.5 Rendering 39 5.6 Error Comparison 41 Chapter 6 Image-Based Relighting 43 6.1 Spherical Harmonic Theory 44 6.1.1 Definition 44 6.1.2 Projection and Reconstruction 45 6.1.3 Basic Properties 46 6.2 Precomputed Radiance Transfer 47 6.3 Real-Time Relighting 49 6.3.1 Specular Image Relighting 49 6.3.2 Diffuse Image Relighting 50 6.4 Rendering Results 51 Chapter 7 Conclusion and Future Work 52 Bibliography 54 List of Figures Figure 1.1 Overview of our system framework 4 Figure 2.1 A light ray is parameterized by its intersections with two parallel planes. 8 Figure 4.1 The surface light field parameterization 22 Figure 4.2 Transformationof view map. 25 Figure 4.3 Reflected view map pixels are recorded in cube maps 27 Figure 4.4 The re-parameterized view maps 29 Figure 5.1 Calculation of light field maps texture coordinates. 40 Figure 5.2 Error comparison framework 41 Figure 5.3 Clustering error rate 41 Figure 5.4 Rendered images comparison.. 42 Figure 6.1 Spherical hramonic basis in 3D 46 Figure 6.2 Diffuse part relighting framework 50 Figure 6.3 Dichromatic reflection model rendering results 51 Figure 6.4 Rotation of environment illumination condition.. 51

    Bibliography
    [1] Adelson E.H., and Bergen, J. R. The Plenoptic Function and the Elements of Early Vision. Computation Models of Visual Processing, Landy M. and Movshon J. editors, MIT Press, (1991)

    [2] Blinn J. F. and Newell M. E. Texture and Reflection in Computer Generated Images. Communications of the ACM, VOL. 19, NO 10, pp. 542-547

    [3] Cabral, Brian, Marc Olano, and Phillip Nemec. Reflection Space Image Based Rendering. In Proceedings of ACM SIGGRAPH 1999, pp. 165-170

    [4] Chai J. X., Tong X., Chan S. C. and Shum H. Y. Plenoptic Sampling. In Proceedings of ACM SIGGRAPH 2000, pp. 307-318

    [5] Chen S.E. Quicktime VR – An Image-Based Approach to Virtual Environment Navigation. In Proceedings of ACM SIGGRAPH 1995, pp. 29-38

    [6] Chen W. C., Grzeszczuk R., and Bouguet J. Y. Light Field Mapping: Efficient Representation and Hardware Rendering of Surface Light Fields. In Proceedings of ACM SIGGRAPH 2002, pp.447-456

    [7] Dana K. J., Van Ginneken B., Nayar S.K., and Koenderink J. J. Reflectance and texture of Real-World Surface. ACM Transactions on Graphics 18, NO 1, pp. 1-34

    [8] Debevec P. E. Rendering Synthetic Objects into Real Scenes: Bridging Traditional and Image-Based Graphics with Global Illumination and High Dynamic Range Photography. In Proceedings of ACM SIGGRAPH 1998, pp. 189-198

    [9] Debevec P., Hawkins T., Tchou C., Duiker H. P., Sarokin W., and Sagar M. Acquiring the reflectance field of a human face. In Proceedings of ACM SIGGRAPH 2000, pp. 145-156

    [10] Debevec P., Taylor C., and Malik J. Modeling and Rendering Architecture from Photographs: A Hybrid Geometry- and Image-Based Approach. In Proceedings of ACM SIGGRAPH 1996, pp. 11-20

    [11] Debevec P., Yu Y., and Borshukov G. D. Efficient View-Dependent Image-Based Rendering with Projective Texture-Mapping. Eurographics Rendering Workshop 1998, pp. 105-116

    [12] Dixon J.K. Pattern Recognition with partly missing data. IEEE Transactions on Systems, Man, and Cybernetics, VOL. SMC-9, 1979, pp.617-621

    [13] Gersho, A., Gray, R.M., Vector Quantization and Signal Compression.
    Kluwer Academic Publishers, 1992.

    [14] Greene, Ned. Environment Mapping and Other Applications of World Projections. IEEE Computer Graphics and Applications, VOL. 6, NO 11, pp. 21-29

    [15] Greene R. Spherical Harmonic Lighting: The Gritty Details. GDC 2003 Proceedings.

    [16] Gortler, S.J., Grzeszczuk R., Szeliski R., and Cohen M.F. The Lumigraph. In Proceedings of ACM SIGGRAPH 1996, pp. 43-54

    [17] Haeberli P. and Segal M. Texture mapping as a fundamental drawing primitive. In Fourth Eurographics Workshop on Rendering, pp. 259-266

    [18] Hathaway R.J., and Bezdek J.C. Fuzzy c-Means Clustering of Incomplete Data. IEEE Transactions on Systems, Man, and Cybernetics − Part B: Cybernetics, VOL 31, NO. 5, pp.735-744

    [19] Kajiya J. T., The Rendering Equation. In Proceedings of ACM SIGGRAPH 1986, pp. 143-150

    [20] Klinker G., Shafer S., and Kanade T. A Practical Approach to Color Image Understanding. International Journal of Computer Vision 4 1990, pp. 7-38

    [21] Kristensen A.W., Akenine-Möller T., and Jensen H.W. Precomputed Local Radiance Transfer for Real-Time Lighting Design. In Proceedings of ACM SIGGRAPH 2005.

    [22] Levoy M. and Hanrahan P. Light Field Rendering. In Proceedings of ACM SIGGRAPH 1996, pp. 31-42

    [23] Lensch H., Kautz J., Goesele M., Heidrich W., and Seidel H.-P. Image- Based Reconstruction of Spatially Varying Materials. In Proceedings of 12th Eurographics Workshop on Rendering 2001.

    [24] Linde Y., Buzo A., and Gray R.M. An Algorithm for Vector Quantizer Design' IEEE Transactions on Communications 1980, pp. 702--710

    [25] Magnor M. and Girod B. Data Compression for Light Field Rendering. IEEE Trans. Circuits and Systems for Video Technology, VOL. 10, NO 3, pp. 338-343

    [26] Matusik W., Pfister H., Ngan A., Beardsley P., Ziegler R., and Mcmillan L. Image-Based 3D photography using Opacity Hulls, In Proceedings of ACM SIGGRAPH 2002, pp. 427-437

    [27] Matusik W., Pfister H., Brand M., and McMillian L. A Data-Driven reflectance model. In Proceedings of ACM SIGGRAPH 2003, pp. 759-769

    [28] McMillian L. and Bishop G. Plenoptic Modeling: An Image-Based Rendering System. In Proceedings of ACM SIGGRAPH 1995, pp. 39-46

    [29] Miller G. S. P., Rubin S., and Ponceleon D. Lazy Decomposition of Surface Light Fields for Precomputed Global Illumination. Eurographics Rendering Workshop 1998, pp. 281-292

    [30] Ng R., Ramamoorthi R., and Hanrahan P. All-Frequency Shadows Using Non-linear Wavelet Lighting Approximtion. In Proceedings of ACM SIGGRAPH 2003, pp. 376-381

    [31] Ng R., Ramamoorthi R., and Hanrahan P. Triple Product Wavelet Integrals for All-Frequency Relighting. In Proceedings of ACM SIGGRAPH 2003, pp. 477-487

    [32] Nicodemus F. E., Richmond J. C., Hsia J. J., Ginsberg I. W., and Limperis T. Geometric Considerations and Nomenclature for Reflectance. Monograph 161, National Bureau of Standards (US), October 1977.

    [33] Nishino K., Sato Y., and Ikeuchi K. Eigen-Texture Method: Appearance Compression based on 3D Model. In Proceedings of Computer Vision and Pattern Recognition 1999, pp. 618-624

    [34] Nishino, K., Zhang, Z., and Ikeuchi, K. Determining Reflectance Parameters and Illumination Distribution from a Sparse Set of Images for View-Dependent Image Synthesis. In ICCV 01. pp. 599–606.

    [35] NVIDIA Corporation, GL_EXT_texture_cube_map, NVIDIA OpenGL Extension Specifications 1999.

    [36] Pulli K., Cohen M., Duchamp T., Hoppe H., Shapiro L., and Stuetzle W. View-based Rendering: Visualizing Real Objects from Scanned Range and Color Data. Eurographics Rendering Workshop 1997, pp. 23-34

    [37] Ramamoorthi, R., and Hanrahan P. A Signal-Processing Framework for Inverse Rendering. In Proceedings of ACM SIGGRAPH 2001, pp. 117–128.

    [38] Rusinkiewicz. S. M. A New Change of Variables for Efficient BRDF Representation. In Eurographics Rendering Workshop 1998, pp. 11-22.

    [39] Sato Y., Wheeler M. D., and Ikeuchi K. Object Shape and Reflectance Modeling from Observation. . In Proceedings of ACM SIGGRAPH 1997, pp. 379-388

    [40] Sloan P. P., Hall J., Hart J., and Synder J. Clustered Principle Components for Precomputed Radiance Transfer. In Proceedings of ACM SIGGRAPH 2003, pp. 382-391

    [41] Sloan P. P., Kautz J., and Snyder J. Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments. In Proceedings of ACM SIGGRAPH 2002, pp. 145-156

    [42] Westin S., Arvo J., and Torrance K. Predicting Reflectance Functions from Complex Surfaces. In Proceedings of ACM SIGGRAPH 1992, pp. 255-264

    [43] Wood D. N., Azuma D. I., Aldinger K., Curless B., Duchamp T., Salesin D.H. and Stuetzle W. Surface Light Field for 3D Photography. In Proceedings of ACM SIGGRAPH 2000, pp. 287-296

    [44] Yu Y., Debevec P., Malik J., and Hawkins T. Inverse Global Illumination: Recovering Reflectance Models of Real Scenes from Photographs, In Proceedings of ACM SIGGRAPH 1999, pp. 215-224

    [45] Yu Y. and Malik J. Recovering Photometric Properties of Architectural Scenes from Photographs. In Proceedings of ACM SIGGRAPH 1998, pp. 207-218

    [46] Zadeh L.A. Fuzzy sets. Information and Control 8, pp.338-353

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE