研究生: |
劉廣志 Kuang-Chih Liu |
---|---|
論文名稱: |
對表面光場做有限制的重新打光 Constrained Relighting of Surface Light Fields |
指導教授: |
張鈞法
Chun-Fa Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 58 |
中文關鍵詞: | image-based 、surface light field 、relighting 、precomputed radiance transfer |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
With image-based relighting (IBL), one can render realistic relit images of a scene without prior knowledge of illumination environment. In this thesis, we present a framework for rendering from arbitrary viewpoints and relighting under arbitrarily rotated illumination environment of a real object from a set of images and a geometric model of the object under static illumination condition. Instead of using analytical reflectance model or using fixed viewpoint image-based relighting techniques, a clustering method for irregular and incomplete data is proposed to remove statistical redundancies and to extract illumination information from a large set of partial data. Further, we integrate the precomputed radiance transfer (PRT) technique into our framework to relight the scene that dynamically changing and constrained lighting condition. By doing so, we relax the limitation of rendering under the static illumination and make it possible to relight virtual objects realistically in real time.
Bibliography
[1] Adelson E.H., and Bergen, J. R. The Plenoptic Function and the Elements of Early Vision. Computation Models of Visual Processing, Landy M. and Movshon J. editors, MIT Press, (1991)
[2] Blinn J. F. and Newell M. E. Texture and Reflection in Computer Generated Images. Communications of the ACM, VOL. 19, NO 10, pp. 542-547
[3] Cabral, Brian, Marc Olano, and Phillip Nemec. Reflection Space Image Based Rendering. In Proceedings of ACM SIGGRAPH 1999, pp. 165-170
[4] Chai J. X., Tong X., Chan S. C. and Shum H. Y. Plenoptic Sampling. In Proceedings of ACM SIGGRAPH 2000, pp. 307-318
[5] Chen S.E. Quicktime VR – An Image-Based Approach to Virtual Environment Navigation. In Proceedings of ACM SIGGRAPH 1995, pp. 29-38
[6] Chen W. C., Grzeszczuk R., and Bouguet J. Y. Light Field Mapping: Efficient Representation and Hardware Rendering of Surface Light Fields. In Proceedings of ACM SIGGRAPH 2002, pp.447-456
[7] Dana K. J., Van Ginneken B., Nayar S.K., and Koenderink J. J. Reflectance and texture of Real-World Surface. ACM Transactions on Graphics 18, NO 1, pp. 1-34
[8] Debevec P. E. Rendering Synthetic Objects into Real Scenes: Bridging Traditional and Image-Based Graphics with Global Illumination and High Dynamic Range Photography. In Proceedings of ACM SIGGRAPH 1998, pp. 189-198
[9] Debevec P., Hawkins T., Tchou C., Duiker H. P., Sarokin W., and Sagar M. Acquiring the reflectance field of a human face. In Proceedings of ACM SIGGRAPH 2000, pp. 145-156
[10] Debevec P., Taylor C., and Malik J. Modeling and Rendering Architecture from Photographs: A Hybrid Geometry- and Image-Based Approach. In Proceedings of ACM SIGGRAPH 1996, pp. 11-20
[11] Debevec P., Yu Y., and Borshukov G. D. Efficient View-Dependent Image-Based Rendering with Projective Texture-Mapping. Eurographics Rendering Workshop 1998, pp. 105-116
[12] Dixon J.K. Pattern Recognition with partly missing data. IEEE Transactions on Systems, Man, and Cybernetics, VOL. SMC-9, 1979, pp.617-621
[13] Gersho, A., Gray, R.M., Vector Quantization and Signal Compression.
Kluwer Academic Publishers, 1992.
[14] Greene, Ned. Environment Mapping and Other Applications of World Projections. IEEE Computer Graphics and Applications, VOL. 6, NO 11, pp. 21-29
[15] Greene R. Spherical Harmonic Lighting: The Gritty Details. GDC 2003 Proceedings.
[16] Gortler, S.J., Grzeszczuk R., Szeliski R., and Cohen M.F. The Lumigraph. In Proceedings of ACM SIGGRAPH 1996, pp. 43-54
[17] Haeberli P. and Segal M. Texture mapping as a fundamental drawing primitive. In Fourth Eurographics Workshop on Rendering, pp. 259-266
[18] Hathaway R.J., and Bezdek J.C. Fuzzy c-Means Clustering of Incomplete Data. IEEE Transactions on Systems, Man, and Cybernetics − Part B: Cybernetics, VOL 31, NO. 5, pp.735-744
[19] Kajiya J. T., The Rendering Equation. In Proceedings of ACM SIGGRAPH 1986, pp. 143-150
[20] Klinker G., Shafer S., and Kanade T. A Practical Approach to Color Image Understanding. International Journal of Computer Vision 4 1990, pp. 7-38
[21] Kristensen A.W., Akenine-Möller T., and Jensen H.W. Precomputed Local Radiance Transfer for Real-Time Lighting Design. In Proceedings of ACM SIGGRAPH 2005.
[22] Levoy M. and Hanrahan P. Light Field Rendering. In Proceedings of ACM SIGGRAPH 1996, pp. 31-42
[23] Lensch H., Kautz J., Goesele M., Heidrich W., and Seidel H.-P. Image- Based Reconstruction of Spatially Varying Materials. In Proceedings of 12th Eurographics Workshop on Rendering 2001.
[24] Linde Y., Buzo A., and Gray R.M. An Algorithm for Vector Quantizer Design' IEEE Transactions on Communications 1980, pp. 702--710
[25] Magnor M. and Girod B. Data Compression for Light Field Rendering. IEEE Trans. Circuits and Systems for Video Technology, VOL. 10, NO 3, pp. 338-343
[26] Matusik W., Pfister H., Ngan A., Beardsley P., Ziegler R., and Mcmillan L. Image-Based 3D photography using Opacity Hulls, In Proceedings of ACM SIGGRAPH 2002, pp. 427-437
[27] Matusik W., Pfister H., Brand M., and McMillian L. A Data-Driven reflectance model. In Proceedings of ACM SIGGRAPH 2003, pp. 759-769
[28] McMillian L. and Bishop G. Plenoptic Modeling: An Image-Based Rendering System. In Proceedings of ACM SIGGRAPH 1995, pp. 39-46
[29] Miller G. S. P., Rubin S., and Ponceleon D. Lazy Decomposition of Surface Light Fields for Precomputed Global Illumination. Eurographics Rendering Workshop 1998, pp. 281-292
[30] Ng R., Ramamoorthi R., and Hanrahan P. All-Frequency Shadows Using Non-linear Wavelet Lighting Approximtion. In Proceedings of ACM SIGGRAPH 2003, pp. 376-381
[31] Ng R., Ramamoorthi R., and Hanrahan P. Triple Product Wavelet Integrals for All-Frequency Relighting. In Proceedings of ACM SIGGRAPH 2003, pp. 477-487
[32] Nicodemus F. E., Richmond J. C., Hsia J. J., Ginsberg I. W., and Limperis T. Geometric Considerations and Nomenclature for Reflectance. Monograph 161, National Bureau of Standards (US), October 1977.
[33] Nishino K., Sato Y., and Ikeuchi K. Eigen-Texture Method: Appearance Compression based on 3D Model. In Proceedings of Computer Vision and Pattern Recognition 1999, pp. 618-624
[34] Nishino, K., Zhang, Z., and Ikeuchi, K. Determining Reflectance Parameters and Illumination Distribution from a Sparse Set of Images for View-Dependent Image Synthesis. In ICCV 01. pp. 599–606.
[35] NVIDIA Corporation, GL_EXT_texture_cube_map, NVIDIA OpenGL Extension Specifications 1999.
[36] Pulli K., Cohen M., Duchamp T., Hoppe H., Shapiro L., and Stuetzle W. View-based Rendering: Visualizing Real Objects from Scanned Range and Color Data. Eurographics Rendering Workshop 1997, pp. 23-34
[37] Ramamoorthi, R., and Hanrahan P. A Signal-Processing Framework for Inverse Rendering. In Proceedings of ACM SIGGRAPH 2001, pp. 117–128.
[38] Rusinkiewicz. S. M. A New Change of Variables for Efficient BRDF Representation. In Eurographics Rendering Workshop 1998, pp. 11-22.
[39] Sato Y., Wheeler M. D., and Ikeuchi K. Object Shape and Reflectance Modeling from Observation. . In Proceedings of ACM SIGGRAPH 1997, pp. 379-388
[40] Sloan P. P., Hall J., Hart J., and Synder J. Clustered Principle Components for Precomputed Radiance Transfer. In Proceedings of ACM SIGGRAPH 2003, pp. 382-391
[41] Sloan P. P., Kautz J., and Snyder J. Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments. In Proceedings of ACM SIGGRAPH 2002, pp. 145-156
[42] Westin S., Arvo J., and Torrance K. Predicting Reflectance Functions from Complex Surfaces. In Proceedings of ACM SIGGRAPH 1992, pp. 255-264
[43] Wood D. N., Azuma D. I., Aldinger K., Curless B., Duchamp T., Salesin D.H. and Stuetzle W. Surface Light Field for 3D Photography. In Proceedings of ACM SIGGRAPH 2000, pp. 287-296
[44] Yu Y., Debevec P., Malik J., and Hawkins T. Inverse Global Illumination: Recovering Reflectance Models of Real Scenes from Photographs, In Proceedings of ACM SIGGRAPH 1999, pp. 215-224
[45] Yu Y. and Malik J. Recovering Photometric Properties of Architectural Scenes from Photographs. In Proceedings of ACM SIGGRAPH 1998, pp. 207-218
[46] Zadeh L.A. Fuzzy sets. Information and Control 8, pp.338-353