簡易檢索 / 詳目顯示

研究生: 黃偉豪
Huang, Wei-Hao
論文名稱: 新型核能級石墨於超高溫氣冷式反應器空氣進氣事故之熱氧化效應
Thermal Oxidation of Next Generation Nuclear-Grade Graphite in Air-ingress Scenario of VHTR
指導教授: 開執中
Kai, Ji-Jung
口試委員: 開物
Kai, Wu
黃爾文
Huang, E-Wen
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 110
中文關鍵詞: 超高溫氣冷式反應器石墨氧化腐蝕陶瓷空氣進氣事故
外文關鍵詞: VHTR, Graphite, Oxidation, Corrosion, Ceramic, Air-ingress accident
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高溫氣冷式反應器(High Temperature Gas-cooled Reactor, HTGR)因具被動性安全及能利用產生的高熱來製氫等兩項特點,而成為眾多第四代核反應器中最具希望突破重圍的反應器。核能級石墨因具較高的熱導率、較大的比熱容及較具等向性的熱膨脹係數使其成為高溫氣冷式反應器的結構材料。在HTGR正常運轉期間,石墨的工作溫度約在500-1000 °C,若此時發生Hot Gas Duct破管事件,反應器洩壓後會引發空氣進氣事故。在反應器底部的石墨組件會與空氣產生化學反應進而引發爐心崩塌, 使燃料直接接觸反應器容器底部並與氧氣反應,進而引發輻射物質外釋的疑慮。
    本氧化腐蝕實驗由兩部分組成,第一部分的主要目的為探討核能級石墨IG-110、IG-430及NBG-18在700-1100°C因氧化效應產生的孔洞顯微結構變化與氧化速率變化之差異來源。利用高溫爐產生的高溫(700-1100 °C)並通以0.35L/min、2L/min之乾燥空氣來模擬核能級石墨在HTGR發生進氣事故時的高溫氧化效應。氧化前的試片以場發射槍掃描式電子顯微鏡(FEG-SEM)輔光學顯微鏡(Optical Microscopy)觀察材料未氧化表面形貌並統計填充物顆粒(Filler Particle)的尺寸及形狀,並以水銀測孔儀(Mercury Porosimetry)分析未氧化的孔洞分布情形。利用比表面積分析儀(BET Surface Area Analyzer)分析材料的Total Surface Area(TSA),並使用X光繞射儀(X-Ray Diffraction Analysis)分析材料之晶體常數。利用石墨材料修正因子(Fe)修正因材料填充物形狀、尺寸不同所造成的Active Surface Area(ASA)差異。最後可計算出材料的ASA,並作為氧化效應實驗前的評估。對照實驗結果,Active Sites理論與實驗結果相符。氧化後的試片以FEG-SEM觀察表面形貌改變,並以水銀測孔儀定量因氧化效應而改變的孔洞分布。進而探討石油焦炭基(Petroleum-Based)的IG-110與瀝青焦炭基(Pitch-Based)的IG-430在進氣事故中的氧化環境(700-1100°C)下,所造成之孔洞的顯微結構變化及氧化機制,以及比較兩種使用相同焦炭但尺寸差異極大的核能級石墨(IG-430、NBG-18)在中溫(700-1000°C)及高溫環境(1000-1100°C)之氧化速率差異之原因。第二部分主要使用真實尺寸之石墨護套(Graphite Sleeve)與以石墨為基材製成之燃料丸(Fuel Compact)進行高溫腐蝕實驗,藉以評估發生進氣事故之石墨組件腐蝕情況。此實驗利用高溫爐建立之高溫1000°C環境,並通以2L/min的乾燥空氣來評估以IG-110製成之石墨護套的削薄現象(The Thinning of Graphite Sleeve)及以IG-110、IG-430製成之燃料丸之質量損失情況。
    最後,第一部分的實驗結果顯示不同焦炭來源的核能級石墨(IG-110、IG-430)在中溫(700-900°C)的氧化速率有明顯差異,並可由材料的氧化速率差異和孔洞分布說明Active Sites集中在孔洞內部;高溫(1000-1100°C)區間,氧化速率的高低是由材料表面孔隙率來決定。第二部分的實驗結果顯示在1000°C、2L/min乾燥空氣的環境下,石墨護套在5小時內即被燒穿,使放置在內的燃料丸暴露在空氣中。而在相同環境下,燃料丸在1小時內會損失22%的質量,使均勻散佈在內的TRISO Fuel Particles暴露在空氣中,進而引發輻射物質外釋的疑慮。


    This work consists of three main parts. The first part describes IG-110, IG-430, and NBG-18 grade nuclear graphite based on the size and shape of the filler particles and how the forming method affects the pore distribution. The second part presents an experimental investigation of nuclear graphite oxidation in air at temperatures ranging from 700°C to 1100°C and correlates the results to the theory of graphite active sites. Mercury porosimetry is used to quantify the phenomenon of pore structure developments at various temperatures. X-ray diffraction analysis of selected graphite is conducted to determine the crystallographic parameters. The results of mercury porosimetry and scanning electron microscopy images are correlated to the theory of graphite active sites, demonstrating the relationship between pore distribution and active sites. The third part of the study presents two experiments. The first experiment investigates the size effect of samples with the same aspect ratio and the second examines the size of fuel pellets and graphite sleeves to evaluate the degradation of graphite components in an air-ingress scenario.

    摘要 I 誌謝 IV 圖目錄 VIII 表目錄 XI 第一章 研究動機 1 第二章 文獻回顧 4 2.1 核分裂基本原理及核分裂反應器之基本構造 4 2.2 超高溫氣冷式反應器 6 2.2.1 氣冷式反應器之歷史沿革 7 2.2.2 高溫氣冷式反應器之爐心設計 8 2.2.3 高溫氣冷式反應器之TRISO燃料顆粒設計 8 2.2.4 高溫氣冷式反應器之反應器結構設計 10 2.2.5 高溫氣冷式反應器之冷卻劑特性 11 2.2.6 高溫氣冷式反應器之安全設計 11 2.2.7 高溫氣冷式反應器之高溫設計 12 2.3 空氣進氣事故 12 2.3.1 空氣進氣事故情境 13 2.3.2 空氣進氣事故之系統安全分析 13 2.4 核能級石墨與其氧化效應 14 2.4.1 碳與石墨的基本結構與性質 15 2.4.2 核能級石墨製程 16 2.4.3 核能級石墨的氧化效應 19 第三章 實驗原理與方法 38 3.1 實驗設計與條件 38 3.2 高溫爐系統與實驗流程 40 3.3 碳原子Active Surface Area(ASA)定量 40 3.4 實驗分析方法 42 3.4.1 電子顯微鏡原理 42 3.4.2 電子束與物質之交互作用 42 3.4.3 掃描式電子顯微鏡系統(SEM) 43 3.4.4 電子槍 44 3.4.5 X光繞射分析(X-ray Diffraction Analysis) 45 3.4.6 水銀測孔儀孔洞分析(Mercury Porosimetry Pore Analysis) 46 3.4.7 BET比表面積分析 47 3.4.8 光學顯微鏡之填充物尺寸形狀定量及表面孔隙率定量 48 第四章 實驗結果與討論 56 4.1 氧化前之核能級石墨分析 56 4.1.1 核能級石墨填充物之SEM/OM觀察與定量 57 4.1.2 核能級石墨孔隙率組成之觀察 57 4.1.3 核能級石墨的水銀測孔儀之孔洞分析 58 4.1.4 核能級石墨的X-ray Diffraction結晶性分析 60 4.1.5 核能級石墨的Active Sites分析 61 4.2 核能級石墨的氧化效應 62 4.2.1 核能級石墨的孔洞分布與Active Sites關係 62 4.2.2 核能級石墨之氧化速率探討 62 4.2.3 核能級石墨的氧氣穿透效應 65 4.2.4 核能級石墨之氧化效應活化能計算 66 4.2.5 中間溫度(700℃)的小孔擴大效應 67 4.2.6 高溫(1000℃)的大孔擴大效應 67 4.2.7 核能級石墨之形狀效應探討 68 4.3 核能級石墨之進氣事故模擬 69 4.3.1 高溫氣冷式反應器進氣事故之石墨腐蝕速率模擬 69 4.3.2 高溫氣冷式反應器進氣事故之真實石墨組件評估 70 第五章 結論 102 第六章 未來研究方向 104 參考文獻 105

    [1] The State of Compliance in the Kyoto Protocol, Corina Haita, ICCG.
    [2] Daniel A. Lashof, Dilip R. Ahuja, “Relative contributions of greenhouse gas emissions to global warming”, Nature, 344, pp. 529-531, 1990.
    [3] 台灣電力公司100年年報
    [4] John R. Lamarsh, Anthony J. Barrata, Introduction to Nuclear Engineering 3rd edition, Patience Hall.
    [5] R&D Outlook for Generation IV Nuclear Energy Systems, Gen IV international forum, Aug, 2009.
    [6] Reactor Physics Parametric and Depletion Studies in Support of TRISO Particle Fuel Specification for the Next Generation Nuclear Plant, James W. Sterbentz, Bren Phillips, Robert L. Sant, Gray S. Chang, Paul D. Bayless, Sep, 2004.
    [7] Fuel and Graphite Needs for VHTR, David Petti, W. Windes, NGNP.
    [8] VHTR System Research Plan, Gen IV international forum, Mar, 2006.
    [9] Present Status of HTGR Research & Development, Oarai Research & Development Center, JAEA.
    [10] S.S. Penner, R. Seiser, K.R. Schultz, “Steps toward passively safe, proliferation-resistant nuclear power”, Progress in Energy and Combustion Science, 34, pp. 275–287, 2008.
    [11] C. Rodriguez, A. Baxter, D. McEachern, M. Fikani, F. Venneri, “Deep-Burn: making nuclear waste transmutation practical”, Nuclear Engineering and Design, 222, pp.299–317, 2003.
    [12] Assessment of GT-MHR Spent Fuel Characteristics and Repository Performance, General Atomics, Apr, 2002.
    [13] S. Shiozawa, S. Fujikawa, T. Iyoku, K. Kunitomi, “Overview of HTTR design features”, Nuclear Engineering and Design, 233, pp.11–21, 2004.
    [14] T. Takeda, M. Hishida, “Study on the passive safe technology for the prevention of air ingress during the primary-pipe rupture accident of HTGR”, Nuclear Engineering and Design, 200, pp.251–259, 2000.
    [15] Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents, Idaho National Laboratory, Dec, 2008.
    [16] Molecular Geometry, Centre for Effective Learning in Science (CELS), Nottingham Trent University.
    [17] Irradiation Damage in Graphite due to Fast Neutrons in Fission and Fusion Systems, International Atomic Energy Agency, Sep, 2000.
    [18] B.T. Kelly, "Physics of Graphite", Applied Science, London, pp.1-361, 1981.
    [19] H.O Pierson, in "Handbook of Carbon, Graphite, Diamond and Fullerenes", Noyes, New Jersey, pp.1-69, 1993.
    [20] Sonja Schimmelpfennig, Bruno Glaser, “One Step Forward toward Characterization: Some Important Material Properties to Distinguish Biochars”, Journal of Environmental Quality, 41, pp. 1001–1013, 2012.
    [21] Something About Nuclear Graphite, T.X Liang, Tsing Hua University.
    [22] Comparison of Mrozowski Crack Sizes between Nuclear Graphite Grades of Petroleum and Coal-based Cokes, Korea Atomic Energy Research Institute, Sep, 2011.
    [23] Nuclear Graphite Manufacture Microstructure and virgin Properties, The University of Manchester, Oct, 2010.
    [24] NGNP Graphite Selection and Acquisition Strategy, Gen IV international forum, Sep, 2007.
    [25] Zhengcao Li, Dongyue Chen, Xiaogang Fu, Wei Miao, Zhengjun Zhang, “The Influence of Pores on Irradiation Property of selected Nuclear Graphite”, Advances in Materials Science and Engineering Volume 2012, Hindawi Publishing Corporation.
    [26] G. Hall, B.J. Marsden, S.L. Fok, “The microstructural modelling of nuclear grade graphite”, Journal of Nuclear Materials, 353, pp.12-18, 2006.
    [27] Tse-Hao Ko, Ping-Chein Chen, Journal of Materials Science Letters,10, pp.301-303,1991.
    [28] Z. Lausevic, S. Marinkovic, “Mechanical Properties and Chemistry of Carbonization of Phenol Formaldehyde Resin”, Carbon, 24, pp.575-580, 1986.
    [29] Jae-Do Nam, James C. Seferis, “Initial Polymer Degradation as a Process in the Manufacture of Carbon-Carbon Composites”, Carbon, 30, pp.751-761, 1992.
    [30] S.S. Tzeng, Ya-Ga Chr, “Evolution of Microstructure and Properties of Phenolic Resin-Based Carbon/Carbon/Composites during Pyrolysis “, Materials Chemistry and Physics, 73, pp. 162-169, 2002.
    [31] J.L. Su, D.D. Perlmutter, “Effect of pore structure on particle ignition during exothermic hasification reactions”, AIChE Journal, 31, pp. 157, 1985.
    [32] NGNP High Temperature Materials White Paper, Idaho National Laboratory, Jun, 2010.
    [33] Cristian Contescu, Samina Azad, “Development of an ASTM Method for Oxidation of Graphite”, 7th International Nuclear Graphite Specialists Meeting, Sep, 2006.
    [34] Practical Aspects of Characterization of Air Oxidation of Graphite, Samina Azad, Graftech.
    [35] J. Kane, C. Karthik, D.P. Butt, W.E. Windes, R. Ubic, “Microstructural characterization and pore structure analysis of nuclear graphite”, Journal of Nuclear Materials, 415, pp. 189–197, 2011.
    [36] Microstructural Characterization of Nuclear Graphites, C. Karthik, Department of Materials Science and Engineering Boise State University.
    [37] Cristian I. Contescu, Tyler Guldan, Peng Wang, Timothy D. Burchell, “The effect of microstructure on air oxidation resistance of nuclear graphite”, Carbon, 50, pp. 3354–3366, 2012.
    [38] Peng Wang, Cristian I. Contescu, Suyuan Yu, Timothy D. Burchell, “Pore structure development in oxidized IG-110 nuclear graphite”, Journal of Nuclear Materials, 430, pp. 229–238, 2012.
    [39] Cristian I. Contescu, “Characterization of Porosity Development in Oxidized Graphite using Automated Image Analysis Techniques”, Oak Ridge National Laboratory, Sep, 2009.
    [40] S. Ahmed, M.H. Back, “The role of the surface complex in the kinetics of the reaction of oxygen with carbon”, Carbon, 23(5), pp. 513–524, 1985.
    [41] Mohamed S. El-Genk, Jean-Michael P. Tournier, ” Development and validation of a model for the chemical kinetics of graphite oxidation”, Journal of Nuclear Materials, 411, pp. 193–207, 2011.
    [42] P.L. Walker Jr., R.L. Taylor, J.M. Ranish, “An update on the carbon oxygen reaction”, Carbon, 29(3), pp. 411–421, 2011.
    [43] G. Miessen, F. Behrendt, O. Deutschmann, J. Warnatz,” Numerical studies of the heterogeneous combustion of char using detailed chemistry, Chemosphere, 42, pp. 609–613, 2011.
    [44] L.R Radovic, H. Jiang, A.A. Lizzio, “A transient kinetics study of char gasification in carbon dioxide and oxygen”, Energy Fuels, 5(1), pp. 68–74, 1991.
    [45] Z. Pan, R.T. Yang,” Strongly bonded oxygen in graphite. Detection by high-temperature TPD and characterization”, Industrial & Engineering Chemistry Research, 31(12), pp. 2675–2680 1992.
    [46] W. Jiang, G. Nadeau, K. Zaghib, K. Kinoshita, “Thermal analysis of the oxidation of natural graphite - effect of particle size”, Thermochimica Acta, 351, pp. 85–93, 2000.
    [47] Oxidation of graphitic surfaces, R. Zacharia, Universitätsbibliothek Wien.
    [48] Chemistry and Physics of Carbon Vol. 1, pp. 129, J. Thomas, Marcel Dekker.
    [49] ASTM, “Standard Test Method for Oxidation Mass Loss of Manufactured Carbon and Graphite”, ASTM C1179-91, 2000.
    Materials in Air
    [50] Andrew C. Kadak, Tieliang Zhai, “Air Ingress Benchmarking withComputational Fluid Dynamics Analysis”, 2nd International Topical Meeting on High Temperature Reactor Technology, Sep, 2004.
    [51] Design of High Temperature Engineering Test Reactor, Shinzo Saito, Japan Atomic Energy Agency.
    [52] 材料電子顯微鏡學,國科會精儀中心,科儀叢書3
    [53] Physical Principles of Electron Microscopy :An Introduction to TEM, SEM, and AEM, Ray F. Egerton, Springer Science+Business Media, Inc.
    [54] P. Scherrer, “Göttinger Nachrichten Gesell.”, Vol. 2, 1918, p 98.
    [55] E.W. Washburn, in Proceedings of the National Academy of Sciences, PNASA, Vol. 7, 1921, pp. 115.
    [56] A.B. Abell, K.L. Willis, D.A. Lange, "Mercury Intrusion Porosimetry and Image Analysis of Cement-Based Materials", Journal of Colloid and Interface Science, 211, pp. 39-44 (1999).
    [57] 台灣大學化學工程系之粉粒體實驗室
    [58] G.Q. Zheng, P. Xu, K. Sridharan, T.R. Allen, ”Pore Structure Analysis of Nuclear Graphites IG-110 and NBG-18”, Advances in Materials Science for Environmental and Nuclear Technology II, pp.251-260, 2011.
    [59] J.H. de Boer, “The Structure and Properties of Porous Materials”, Symposium, Butterworths, 68, 1958.
    [60] Mohamed S. El-Genk, Jean-Michel P. Tournier,” Comparison of oxidation model predictions with gasification data of IG-110,IG-430 and NBG-25 nuclear graphite, ” Journal of Nuclear Materials, 420, pp. 141–158, 2012.
    [61] Se-Hwan Chi, Gen-Chan Kim, ” Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades ” Journal of Nuclear Materials, 381, pp. 9–14, 2008.
    [62] 楊佳瑋,「高溫條件下核能級石墨材料的氧化和微結構變化」,國立清華大學工程與系統科學系,專題報告,中華民國一零二年
    [63] E.L. Fuller, J.M. Okoh, “Kinetics and mechanisms of the reaction of air with nuclear grade graphites: IG-110”, Journal of Nuclear Materials, 240, pp. 241-250(1997).
    [64] E.S. Kim, K.W. Lee, H.C. No, “Analysis of geometrical effects on graphite oxidation through measurement of internal surface area”, Journal of Nuclear Materials, 348, pp. 174-180(2006).
    [65] R. Moormann, H.K. Hinssen, K. Kuhn, “Oxidation Behaviour of an HTR Fuel Element Matrix Graphite in Oxygen Compared to a Standard Nuclear Graphite”, Nuclear Engineering and Design, 227, pp. 281-284(2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE